Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design -

이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -

  • 조강우 (한국과학기술연구원 환경기술연구단) ;
  • 김태균 (한국과학기술연구원 환경기술연구단) ;
  • 이병하 (한국과학기술연구원 환경기술연구단) ;
  • 이슬비 (이화여자대학교 환경공학과) ;
  • 송경근 (한국과학기술연구원 환경기술연구단) ;
  • 안규홍 (한국과학기술연구원 환경기술연구단)
  • Received : 2009.09.10
  • Accepted : 2009.10.05
  • Published : 2009.10.15

Abstract

This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Keywords

Acknowledgement

Supported by : 한국과학기술연구원(KIST)

References

  1. 건설교통부 (2007) 환경친화적 도로유지관리 잠정지침, pp.46-68, 건설교통부, 서울
  2. 김이형, 이선하 (2005) 주차장 및 교량 강우유출수의 중금속 오염물질 특성과 동적 EMC, 한국물환경학회지, 21(4), pp.385-392
  3. 김이형, 이은주, 고석오, 강희만 (2006) 아스팔트 포장 고속도 로의 강우 지속시간별 오염물질 유출 경향, 한국도로학회 논문집, 8(1), pp.99-106
  4. 신창민, 최지용, 박철휘 (2004) 도시지역에서의 토지이용별 비점오염물질 유출 특성, 대한환경공학회지, 26(7), pp.729-735
  5. 이두진, 윤현식, 선상운, 곽수동, 이동훈 (2004) 강우유출 모델을 이용한 합류식 하수관거 월류수 저류시설의 용량결정에 관한 연구(II) - 저류조 설계를 중심으로, 대한환경공학회지, 26(3), pp.370-380
  6. 이은주, 고석오, 강희만, 이주광, 이병식, 임경호, 김이형 (2006) 포장지역에서의 강우사상별 EMC 산정 및 단순 샘플농도와의 비교, 한국물환경학회지, 22(1), pp.104-109
  7. 조강우, 송경근, 김창균, 김태균, 안규홍 (2007) 비점오염원 관리 전략 수립을 위한 Bioretention 연구, 한국물환경학회․대한상하수도학회 공동춘계학술발표회 논문집, pp.415-420
  8. 환경부 (2006) 비점오염원관리 업무편람, pp.56-73, 환경부, 서울
  9. 환경부 (2003) 비점오염관리를 위한 강우유출수 관리 매뉴얼, pp.165-198, 환경부, 서울
  10. Cho, K.W., Song, K.G., Cho, J.W., Kim, T.G., and Ahn, K.H. (2009) Removal of nitrogen by a layered soil infiltration system during intermittent storm events, Chemosphere, 76, pp.690-696 https://doi.org/10.1016/j.chemosphere.2009.03.025
  11. Department of Environmental Resources (1993) Design Manual for Use of Bioretention in Stormwater Management, Prince George's County (Md.) Government, Prince George's County
  12. Hsieh, C. and Davis, A.P. (2005) Evaluation and optimization of bioretention media for treatment of urban storm water runoff, J. Environ. Eng.-ASCE, 131(11), pp.1521-1531 https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1521)
  13. Jang, A., Seo, Y.W., and Bishop, L. (2005) The removal of heavy metals in urban runoff by sorption on mulch, Environ. Pollut., 133, pp. 117-127 https://doi.org/10.1016/j.envpol.2004.05.020
  14. Kim, H., Seagren, E.A., and Davis A.P. (2003) Engineered bioretention for removal of nitrate from stormwater runoff, Water Environ. Res., 75, pp.355-367 https://doi.org/10.2175/106143003X141169
  15. Song, K.G., Cho, K.W., and Ahn, K.H. (2007) A comprehensive study on bioretention for urban storm runoff management in Korea, Proceedings of 4th IWA specialist conference on efficient use and management of urban water supply-Efficient 2007, pp.689-698
  16. Song, K.G., Cho, K.W., Cho, J.W., Kim, T.G., and Ahn, K.H. (2008) The fate of nitrogen in bioretention as a novel practice to control storm runoff, Proceedings of 8th IWA specialized conference of small water and wastewater systems and 2nd IWA specialized conference on decentralized water and wastewater international network, pp.184-187
  17. Tuccillo, M.E. (2006) Size Fractionation of Metals in Runoff from Residential and Highway Storm Sewers, Sci. Tot. Envrion., 355, pp.288-300 https://doi.org/10.1016/j.scitotenv.2005.03.003
  18. U.S. Environmental Protection Agency (2002) Urban Stormwater BMP Performance Monitoring, pp.4-44, U.S. Environmental Protection Agency, Washington D.C
  19. Zhang, J., Huang, X., Liu, C., Shi, H., and Hu, H. (2005) Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system, Ecol. Eng., 25, pp.419-428 https://doi.org/10.1016/j.ecoleng.2005.06.011