The effect of walking with high-heel shoes on local dynamic stability

보행 시 하이힐 높이가 국부적 동적 안정성에 미치는 영향

Ryu, Ji-Seon
류지선

  • Published : 20090100

Abstract

The purpose of this study was to determine the variability present in time series generated from high-heeled gait via nonlinear analysis. Twelve women (mean height: 162.3$\pm$4.1 cm, mean body mass: 55.4$\pm$5.5 kg, mean age: 24.5$\pm$4.4 yrs.) without history or complain of lower limb pain participated and were asked to walk on a treadmill at their preferred walking speed (mean speed 3.14$\pm$0.5 km/hr). Three-dimensional motion analysis was performed with a 6-camera motion analysis system (Qualisys, Inc., Switzerland). Each participant was asked to perform 100 strides continuous treadmill walking with three different height of high heel shoes, 3, 6, and 9 cm. To quantify local dynamic system the largest Lyapunov exponents (LyE) were computed for nonlinear time series of center of the forehead displacement and the knee joint angle in sagittal plane. In this study, heel height affected on some of local dynamic stability, which is defined as the sensitivity of the system to small perturbations during locomotion.

이 연구의 목적은 여자 하이힐 (high heel)의 굽 높이 증가에 따라 보행 시 국부적 동적 안정성을 조사하기 위한 것이다. 이를 위해 12명 대상자는 높이 3 cm, 7 cm, 9 cm를 신고 적어도 100 스트라이드 트레이드밀 (treadmill) 보행을 실시했다. 보행 시 국부적 동적 안정성을 조사하기 위해 발에서 가장 멀리 떨어진 머리의 3차원 선형 시계열 연속 자료와 각형의 상대 무릎 각을 선정해 비선형 분석 기법인 Lyapunov 지수를 산출했다. 그 결과 다음과 같은 결론을 얻었다. 무릎관절과 머리의 상하 국부적 동적 안정성은 힐 높이 3 cm 보행이 7, 9 cm 보행보다 대체로 높았으나, 힐 높이가 증가함에 따라 안정성이 감소하는 뚜렷한 현상은 보이지 않았다. 그러나 머리 전후의 국부적 동적 안정성은 힐 높이에 따라 안정성이 감소하는 대체적으로 규칙적인 현상을 보인 반면, 머리의 좌우의 국부적 동적 안정성은 힐 높이에 영향을 받지 않은 것으로 관찰되었다.

Keywords

References

  1. 류지선(2008). 퇴행성 무릎 관절염 환자와 정상인 보행의 관절 충격과 내력 비교. 한국체육학회지, 47(1) 435-448
  2. 지선(2007). 비선형 시계열 분석기법에 의한 선호속도 걷기의 동적 안정성 비교분석. 한국체육학회지, 46(2) 431-439
  3. Bendix, T., Sorensen, S. S., & Klausen, K. (1984). Lumbar curve, trunk muscles, and line of gravity with different heel heights. Spine, 9(2), 223-237 https://doi.org/10.1097/00007632-198403000-00016
  4. Buzzi, U. H., Stergiou, N., Kurz, M., Hageman, P. A., & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443 https://doi.org/10.1016/S0268-0033(03)00029-9
  5. Dingwell, J. B., & Cusumano, J. P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos, 10(4), 848-863 https://doi.org/10.1063/1.1324008
  6. Dingwell, J. B., Cusumano, J. P., Sternad, D., & Cavanagh, P. R. (2000). Slower speeds in patients with diabetic neuropath lead to improved local dynamics stability of continuous overground walking. Journal of Biomechanics, 3, 1269-1277 https://doi.org/10.1016/S0021-9290(00)00092-0
  7. Ebbeling, C. J., Hamill, J., & Crussemeyer, J. A. (1994). Lower extremity mechanics and energy cost of walking in high-heeled shoes. The Journal of orthopedic and Sports Physical Therapy, 19(4), 190-196
  8. Fraser, A. M. (1986). Using mutual information to estimate metric entropy. In: Mayer-Kress, G.(Ed), Dimensions and Entropies in Chaotic Systems. Springer, Berlin, 82-91
  9. Gajdosik, R. L., Linden, D. W. V., & Williams, A. K. (1999). Influence of age on length and passive elastic stiffness characteristics of the calf muscle-tendon unit of woman. Physical Therapy, 79, 827-838
  10. Gefen, A., Megido-Ravid, M., Itzchak, Y., & Arcan, M. (2002). Analysis of muscular fatigue and foot stability during high-heeled gait. Gait & Posture, 15(1), 56-63 https://doi.org/10.1016/S0966-6362(01)00180-1
  11. Kaplan, D. T. & Glass, L. (1995). Understanding Nonlinear Dynamics, Springer-Verlag, New York
  12. Kantz, H., & Schreiber, S. (1997). Nonlinear time series analysis. Cambrige University Press, Cambridge, UK.
  13. Kennel, M. B., Brown, R., & Abarbanel. (1992). Determining minimum embedding dimension using a geometrical construction. Physics. Review, A45, 3403-3411 https://doi.org/10.1103/PhysRevA.45.3403
  14. Liu, Y., & Wang, Y. T. (2004). Reliability of the kinetic measures under different heel conditions during normal walking. Measurement in Physical Education & Exercise Science. 8(1), 21-31 https://doi.org/10.1207/s15327841mpee0801_2
  15. McGraw. (2003). Knee arthritis study vindicates high heels, Physicians & Sportsmedicine, 31(11), 11-15 http://www.mcgraw-hill.com/
  16. McBride, I. D., Wyss, U. P., Cooke, T. D., Murphy, L., Phillips, J., & Olney, S. J. (1991). First metatarsophalangeal joint reaction forces during high-heel gait. Foot & Ankle International, 11(5), 282-288 https://doi.org/10.1177/107110079101100505
  17. Nyska, M., McCabe, C., Linge, K., & KLenerman, L. (1996). Plantar foot pressures during treadmill walking with high-heel and low-heel shoes. Foot & Ankle International, 17(11), 662-666 https://doi.org/10.1177/107110079601701103
  18. Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3/4), 579-616 https://doi.org/10.1007/BF01053745
  19. Snow, R. E., & Williams, K. R. (1994). High heeled shoes: their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction forces. Archives of physical Medicine and Rehabilitation, 75(5), 568-576
  20. Stefanyshyn, D. J., Nigg, B. M., Fisher, V., O'Flynn, B., & Liu, W. (2000). The influence of high heeled shoes o kinematics, kinetics, and muscle EMG of normal female gait. Journal of Applied Biomechanics, 16(3), 309-319
  21. Takens, F. (1981). Detecting strange attractors in turbulence. In: Rand, D., Young, L.S.(Eds.), Dynamical systems and Turbulence, Warwick(1980). Springer, Berlin V. 898, 366-381
  22. Wang, Y., Pascoe, D. D., Kim, C. K., & Xu, D. (2001). Force patterns of heel strike and toe off on different heel heights in normal walking. Foot & Ankle International, 22(6), 486-492
  23. Wolf, A., Swift, J. B., Swinny, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica, 16, 285-317 https://doi.org/10.1016/0167-2789(85)90011-9