DOI QR코드

DOI QR Code

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang -

계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -

  • Koo, Hae-Jung (Meteorological Application Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Choi, Young-Jean (Meteorological Application Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Kim, Kyu-Rang (Meteorological Application Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Byon, Jae-Young (Meteorological Application Research Laboratory, National Institute of Meteorological Research, KMA)
  • 구해정 (국립기상연구소 응용기상연구과) ;
  • 최영진 (국립기상연구소 응용기상연구과) ;
  • 김규랑 (국립기상연구소 응용기상연구과) ;
  • 변재영 (국립기상연구소 응용기상연구과)
  • Published : 2009.12.30

Abstract

The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

2009년 2월 9일 화왕산에서는 대보름 행사인 '억새 태우기'가 많은 사람들이 지켜보는 가운데 시작되었지만 예상하지 못한 강풍으로 산불로 확대되어 많은 인명피해가 발생하였다. 본 연구에서는 3차원 계산 유체역학 모형인 CFD_NIMR_SNU 모형을 이용하여 복잡한 산악지역에서 국지적 가열에 따른 바람장을 모사함으로써 이날 발생한 산악 화재의 특성을 분석하였다. 화재가 발생한 지역의 지표 온도는 가열이 없을 때, $300^{\circ}C$$600^{\circ}C$ 일 때의 3가지 가열 강도조건을 주어 모사하였다. 지표 가열은 화재 발생 지역 중앙에서 수직 바람장을 $0.7m\;s^{-1}(300^{\circ}C)$$1.1m\;s^{-1}(600^{\circ}C)$만큼 증가시켰다. 난류운동에너지는 화재의 열에너지 자체 및 열적 순환에 의해 증가된 운동에너지에 의해 증가하였다. 화재로 인한 열은 복잡한 지형과 강한 경계 바람 조건과 함께 화왕산의 예상하지 못한 난류와 강풍 조건을 유도하였다. CFD_NIMR_SNU 모형은 인명피해를 발생시킨 산불을 이해하는데 도움이 되는 귀중한 분석 자료를 제공하였다. 모사 결과에 따르면 화재 발생 지점은 풍상측의 높은 지형으로 인하여 화재 발생 직전까지는 바람이 거의 억제되었던 것으로 보인다. 이러한 바람의 억제는 화재 발생에 따른 뜨거운 공기의 상승과 강한 경계 바람 조건에 의해 쉽게 되돌려졌다. 즉, 강한 경계 바람과 화재로 인한 가열이 함께 작용하여 강한 난류가 만들어졌고, 여러 명의 사상자가 발생한 산악 화재로 확산되었던 것이다. CFD_NIMR_SNU 모형은 중규모 모형과의 결합을 통하여 좁은 영역의 화재로 인한 난류 예보를 생산하는 등 산불 예방을 위해 활용될 수 있을 것이다.

Keywords

References

  1. Arya, S. P., 2001: Introduction to micrometeorology (2nd ed.). Academic Press, 420pp
  2. Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion, Journal of Applied Meteorology 42, 1636-1648 https://doi.org/10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2
  3. Baik, J.-J., Y.-S. Kang, and J.-J. Kim, 2007: Modeling reactive pollutant dispersion in an urban street canyon, Atmospheric Environment 41, 934-949 https://doi.org/10.1016/j.atmosenv.2006.09.018
  4. Clark, T. L., M. A. Jenkins, J. Coen, and D. Packham, 1996a: A coupled atmosphere-fire model: convective feedback on fire-line dynamics, Journal of Applied Meteorology 35, 875-901 https://doi.org/10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2
  5. Clark, T. L., M.A. Jenkins, J. L. Coen, and D. R. Packham, 1996b: A coupled atmosphere-fire model: role of the convective Froude number and dynamic fingering at the fireline, International Journal of Wildland Fire 6(4), 177-190 https://doi.org/10.1071/WF9960177
  6. Jang, W., and H.-Y. Chun, 2008: Severe downslope windstorms of Gangneung in the springtime, Atmosphere18(3), 207-224 (in Korean with English abstract)
  7. Kamial, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer flows,. Oxford University Press 289pp
  8. Kim, J.-J., and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating, Atmospheric Environment 35, 3395-3404 https://doi.org/10.1016/S1352-2310(01)00135-2
  9. Kim, J.-J. and J.-J. Baik, 2004: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-$\varepsilon$ turbulence model, Atmospheric Environment 38, 3039-3048 https://doi.org/10.1016/j.atmosenv.2004.02.047
  10. Kim, K.-S., I.-S. Jang, and J.-S. Lee, 1995: Catch-fire Temperature and Amount of Combustion-Heat on the fuel of Miscanthus type, Korean Joural of Ecology 18(4), 483-491 (in Korean with English abstract)
  11. Kwak, K.-H., J.-J. Baik, and S.-H. Lee, 2008: Modeling the diurnal variation of urban street canyon flow ,Proceedings of the AUTUMN Meeting of KMS 2008, Korean Meteorological Society, 312-313 (in Korean)
  12. Lee, H. W., W.-B. Jeon, S.-H. Lee, and H.-J. Choi, 2008: Analysis of Numetical Meteorological Fields due to the detailed surface data in complex coastal area, Journal of Korean Society for Atmospheric Environment 24(6), 649- 661 (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.6.649
  13. Lee, S.-Y., S.-Y. Han, S.-H. An, M.-B. Lee, and J.-S. Oh, 2001a: Regional analysis of forest fire occurrence factors, Proceedings of the Korean Society Agricultural and Forest Meteorology Conference, The Korean Society of Agricultural and Forest Meteorology, 123-126
  14. Lee, S. Y., S.-Y. Han, S.-H. An, J.-S. Oh, M.-H. Jo, and M.-S. Kim, 2001b: Regional analysis of forest fire occurrence factors in Kangwon province, Korean Jouranl of Agricultural and Forest Meteorology 3(3), 135-142 (in Korean with English abstract)
  15. Li, X.-X., C.-H. Liu, D. Y. C. Leung, and K. M. Lam, 2006: Recent Progress in CFD modeling of wind filed and pollutant transport in street canyons, Atmospheric Environment 40,5640-5658 https://doi.org/10.1016/j.atmosenv.2006.04.055
  16. Miller, P. P., and D. R. Durran, 1991: On the sensitibity of downslope windstorms to the asymmetry of the mountain profile, Journal of Atmospheric Science 48, 1457-1473 https://doi.org/10.1175/1520-0469(1991)048<1457:OTSODW>2.0.CO;2
  17. National Institute of Meteorological Research (NIMR), 2006: Diagnosis of Characteristics of Local Meteoroloy and Development of Techniques for the Meteorological Environmental Impact Assessment (I). 218pp. (in Korean with English abstract)
  18. NIMR, 2007: Diagnosis of Characteristics of Local Meteoroloy and Development of Techniques for the Meteorological Environmental Impact Assessment (II). 153pp. (in Korean with English abstract)
  19. NIMR, 2008: Diagnosis of Characteristics of Local Meteoroloy and Development of Techniques for the Meteorological Environmental Impact Assessment (III). 119pp. (in Koreanwith English abstract)
  20. Oke, T. R., 1987: Boundary Layer Climates (2nd ed.). Routledge435pp
  21. Patankar, S. V., 1980: Numerical Heat Transfer and FluidFlow, McGraw-Hill, New York pp. 126-131
  22. Patton, E. G. and J. L. Coen, 2004: WRF-Fire: A coupled atmosphere fire module for WRF. Preprint of WRF/ MM5 Users’s Workshop, Boulder, June 22-25, 49-63, Richard, Ep. P., Mascart, and E. C. Nickerson, 1989:The role of surface friction in downslope windstorms,Journal of Applied Meteorology 28, 241-251 https://doi.org/10.1175/1520-0450(1989)028<0241:TROSFI>2.0.CO;2
  23. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Technical Note NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, CO, 88 pp
  24. Tennekes and J. L. Lumley, 1973: A first course in turbulence(2nd printing), The MIT Press, 300pp
  25. Won, M. S., K. S. Koo, M. B. Lee, and Y. M. Son, 2008: Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-fire Area Using Landsat TM imagery, Korean Journal of Agricultural and Forest Meteorology 10(1), 17-24 (in Korean withEnglish abstract) https://doi.org/10.5532/KJAFM.2008.10.1.017
  26. 이재규, 권태영, 정태경, 고숙진, 2003: 국가 산악기상센터의 역할과 발전에 관한 연구, 연구보고서, 53pp
  27. http://ebook.forest.go.kr(2009. 8. 1)
  28. http://www.ngic.go.kr(2009. 2. 11)
  29. http://gallery.encyber.com(2009. 11. 24)

Cited by

  1. The past, present and future of CFD for agro-environmental applications vol.93, 2013, https://doi.org/10.1016/j.compag.2012.09.006
  2. Numerical Experiment on the Variation of Atmospheric Circulation due to Wild Fire vol.22, pp.2, 2013, https://doi.org/10.5322/JESI.2013.22.2.173