DOI QR코드

DOI QR Code

Extremely large-area travelling-wave dielectrophoresis microbead separator using a multilayered bus bar

다층 버스 바를 이용한 극한 면적의 진행파 유전영동 미세입자 분류기

  • Choi, Eun-Pyo (Department of Mechanical Engineering, Sogang University) ;
  • Kim, Byung-Kyu (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jung-Yul (Department of Mechanical Engineering, Sogang University)
  • 최은표 (서강대학교 기계공학과) ;
  • 김병규 (한국항공대학교 항공우주 및 기계공학부) ;
  • 박정열 (서강대학교 기계공학과)
  • Published : 2009.03.31

Abstract

A Multilayered microelectrode design is presented for large area travelling wave dielectrophoresis (TwDEP) separators. Most of typical TwDEP chip has been arrayed with 1000 electrodes in $20{\times}20\;mm^2$. However, there is a limitation of the device area that is critical in throughput, because when the area of TwDEP becomes larger, the resistance of microelectrodes for bus bar is also increased. In this paper, we successfully developed a novel TwDEP chip with extremely large area ($31{\times}25\;mm^2$) by a unique multilayered bus bar design. According to the resistance simulation of our microelectrodes, it is possible to realize a TwDEP chip with an infinite longitudinal length. We demonstrated the feasibility of our suggestion with latex microbeads and showed the potential of extremely high throughput separation with TwDEP technique.

Keywords

References

  1. 김동일, 최은표, 최성식, 박정열, 이상호, 윤광석, '임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩', 센서학회지, 제18권, 제1호, pp. 42-47, 2009 https://doi.org/10.5369/JSST.2009.18.1.042
  2. 최성용, 박제균, '유체영동 기반의 입자분리현상을 이용한 세포 크기 측정방법', 센서학회지, 제17권, 제4호, pp. 245-249, 2008 https://doi.org/10.5369/JSST.2008.17.4.245
  3. J. Park, B. Kim, S. K. Choi, S. Hong, S. H. Lee, and K. I. Lee, 'An efficient cell separation system using 3D-asymmetric microelectrodes', Lab on a Chip, vol. 5, pp. 1264-1270, 2005 https://doi.org/10.1039/b506803g
  4. P. R. C. Gascoyne, X. B. Wang, Y. Huang, and F. F. Becker, 'Dielectrophoretic separation of cancer cells from blood', Ieee Transactions on Industry Applications, vol. 33, pp. 670-678, 1997 https://doi.org/10.1109/28.585856
  5. H. B. Li and R. Bashir, 'Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes', Sensors and Actuators B-Chemical, vol. 86, pp. 215-221, 2002 https://doi.org/10.1016/S0925-4005(02)00172-7
  6. G. Fuhr, R. Hagedorn, T. Muller, W. Benecke, B. Wagner, and J. Gimsa, 'Asynchronous travelingwave induced linear motion of living cells', Studia Biophysica, vol. 140, pp. 79-102, 1991
  7. Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig, 'Electrokinetic behavior of colloidal particles in traveling electric-fields - studies using yeast-cells', J. Physics D-Applied Physics, vol. 26, pp. 1528-1535, 1993 https://doi.org/10.1088/0022-3727/26/9/030
  8. M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, 'Electromanipulation and separation of cells using travelling electric fields', J. Physics DApplied Physics, vol. 29, pp. 2198-2203, 1996 https://doi.org/10.1088/0022-3727/29/8/021
  9. N. G. Green, M. P. Hughes, W. Monaghan, and H. Morgan, 'Large area multilayered electrode arrays for dielectrophoretic fractionation', Microelectronic Engineering, vol. 35, pp. 421-424, 1997 https://doi.org/10.1016/S0167-9317(96)00122-0
  10. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, 'Large-area travelling-wave dielectrophoresis particle separator', J. Micromechanics and Microengineering, vol. 7, pp. 65-70, 1997 https://doi.org/10.1088/0960-1317/7/2/004
  11. X. B. Wang, Y. Huang, X. J. Wang, F. F. Becker, and P. R. C. Gascoyne, 'Dielectrophoretic manipulation of cells with spiral electrodes', Biophysical Journal, vol. 72, pp. 1887-1899, 1997 https://doi.org/10.1016/S0006-3495(97)78834-9
  12. L. Cui and H. Morgan, 'Design and fabrication of travelling wave dielectrophoresis structures', J. Micromechanics and Microengineering, vol. 10, pp. 72-79, 2000 https://doi.org/10.1088/0960-1317/10/1/310
  13. L. Cui, D. Holmes, and H. Morgan, 'The dielectrophoretic levitation and separation of latex beads in microchips', Electrophoresis, vol. 22, pp. 3893- 3901, 2001 https://doi.org/10.1002/1522-2683(200110)22:18<3893::AID-ELPS3893>3.0.CO;2-2
  14. H. Morgan, A. G. Izquierdo, D. Bakewell, N. G. Green, and A. Ramos, 'The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays : analytical solution using Fourier series', J. Physics D-Applied Physics, vol. 34, pp. 1553-1561, 2001 https://doi.org/10.1088/0022-3727/34/10/316
  15. R. Pethig, M. S. Talary, and R. S. Lee, 'Enhancing traveling-wave dielectrophoresis with signal superposition', IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 43-50, 2003
  16. Y. J. Zhao, U. C. Yi, and S. K. Cho, 'Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics', J. Microelectromechanical Systems, vol. 16, pp. 1472-1481, 2007 https://doi.org/10.1109/JMEMS.2007.906763
  17. R. Pethig, J. P. H. Burt, A. Parton, N. Rizvi, M. S. Talary, and J. A. Tame, 'Development of biofactoryon- a-chip technology using excimer laser micromachining', J. Micromechanics and Microengineering, vol. 8, pp. 57-63, 1998 https://doi.org/10.1088/0960-1317/8/2/004