DOI QR코드

DOI QR Code

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement

임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩

  • Kim, Dong-Il (Department of Electronic Engineering, Sogang University) ;
  • Choi, Eun-Pyo (Department of Mechanical Engineering, Sogang University) ;
  • Chio, Sung-Sik (School of Life Science and Biotechnology, Korea University) ;
  • Park, Jung-Yul (Department of Mechanical Engineering, Sogang University) ;
  • Lee, Sang-Ho (School of Life Science and Biotechnology, Korea University) ;
  • Yun, Kwang-Seok (Department of Electronic Engineering, Sogang University)
  • Published : 2009.01.31

Abstract

In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

Keywords

References

  1. L.-S. Jang and M.-H. Wang, 'Microfluidic device for cell capture and impedance measurement', Biomed. Microdevice, vol. 9, pp. 737-743, 2007 https://doi.org/10.1007/s10544-007-9084-0
  2. S. Zheung, M. Liu, and Y.-C. Tai, 'Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing', Biomed. Microdevices, vol. 10, pp. 221-231, 2008 https://doi.org/10.1007/s10544-007-9128-5
  3. L.-M. Fu, C.-Y. Lee, M.-H. Liao, and C.-H. Lin, 'Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchip', Biomed. Microdevices, vol. 10, pp. 73-80, 2008 https://doi.org/10.1007/s10544-007-9111-1
  4. S. Gawad, K. Cheung, U. Seger, A. Bertsch, and P. Renaud, 'Dielectric spectroscopy in a micromachined flow cytometer : Theoretical and practical considerations', Lab Chip, vol. 4, pp. 241-251, 2004 https://doi.org/10.1039/b313761a
  5. T. Sun, S. Gawad, C. Bernabini, B. G Green, and H. Morgen, 'Broadband single cell impedance spectroscopy using maximum length sequences : theoretical analysis and practical considerations', Meas. Sci. Technol., vol. 18, pp. 2859-2868, 2007 https://doi.org/10.1088/0957-0233/18/9/015
  6. R. Pantoja, J. M. Nagarah, D. M. Starace, N. A. Melosh, R. Blunch, F. Bezanilla, and J. R. Heath, 'Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics', Biosens. Bioelectron., vol. 20, no. 3, pp. 509-517, 2004 https://doi.org/10.1016/j.bios.2004.02.020
  7. N. Fertig, M. Klau, M. George, R. H. Blick, and J. C. Behrends, 'Activity of single ion channel proteins detected with a planar microstructure', Appl. Phys. Lett., vol. 9, no. 25, pp. 4865-4867, 2002
  8. T. Lehnert, M. A. M. Gijs, R. Netzer, and U. Bischoff, 'Realization of hollow $SiO_{2}$ micronozzles for electrical measurements of living cells', Appl. Phys. Lett., vol. 81, no. 26, pp. 5063-5065, 2002 https://doi.org/10.1063/1.1528292
  9. J. Seo, C. Ionescu-Zanetti, J. Diamond, R. Lal, and L. P. Lee, 'Integrated multiple patch-clamp array chip via lateral cell trapping junctions', Appl. Phys. Lett., vol. 84, no. 11, pp. 1973-1975, 2004 https://doi.org/10.1063/1.1650035
  10. A. Y. Lau, P. J. Hung, A. R. Wu, and L. P. Lee, 'Open-access microfluidic patch-clamp array with raised lateral cell trapping sites', Lab Chip, vol. 6, pp. 1510-1515, 2006 https://doi.org/10.1039/b608439g
  11. C. Chen and A. Folch, 'A high-performance elastomeric patch clamp chip', Lab Chip, vol. 6, pp. 1338-1345, 2006 https://doi.org/10.1039/b607913j
  12. E. Evans and A. Yeung, 'Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration', Biophys. J., vol. 56, pp. 151-160, 1989 https://doi.org/10.1016/S0006-3495(89)82660-8
  13. M. Dao, C. T. Lim, and S. Suresh, 'Mechanics of the human red blood cell deformed by optical tweezers', J. Mech. Phys. Solids., vol. 51, pp. 2259-2280, 2003 https://doi.org/10.1016/j.jmps.2003.09.019
  14. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, 'Nonlinear elastic and viscoelastic deformation of the red blood cell induced by optical tweezers', Mech. Chem. Biosyst., vol. 1, pp. 169-180, 2004
  15. S. Suresh, 'Biomechanics and biophysics of cancer cells', Acta Biomater., vol. 3, pp.413-438, 2007 https://doi.org/10.1016/j.actbio.2007.04.002
  16. 정귀상, 우형순, 'PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성', 센서학회지, 제15권, 제1호, pp. 53-57, 2006 https://doi.org/10.5369/JSST.2006.15.1.053
  17. 윤광석, 이도훈, 김학성, 윤의식, '미소유체 칩 상에서 Quantum Dot 및 마이크로 비드를 이용한 세포분석', 센서학회지, 제14권, 제5호, pp. 308-312, 2005
  18. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishman, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, 'Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence', Biophys. J., vol. 88, pp. 3689-3698, 2005 https://doi.org/10.1529/biophysj.104.045476
  19. H. Morgen, T. Sun, D. Holmes, S. Gawad, and N. G Green, 'Single cell dielectric spectroscopy', J. Phys. D: Appl. Phys,. vol. 40, pp. 61-70, 2007 https://doi.org/10.1088/0022-3727/40/1/S10