Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells

직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성

  • Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Ko, Ha-Na (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Ji-Young (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choi, Jun-Kyu (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Sang-Un (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Hyung-Joong (Department of Advanced Materials Engineering, Kongju National University)
  • 홍영택 (한국화학연구원 에너지소재연구센터) ;
  • 고하나 (한국화학연구원 에너지소재연구센터) ;
  • 박지영 (한국화학연구원 에너지소재연구센터) ;
  • 최준규 (한국화학연구원 에너지소재연구센터) ;
  • 김상언 (한국화학연구원 에너지소재연구센터) ;
  • 김형중 (공주대학교 신소재공학과)
  • Published : 2009.12.30

Abstract

Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

친전자성 치환반응을 통하여 제조된 술폰화 단량체와 비(非)술폰화 단량체의 직접 중합법을 통하여 서로 다른 술폰화도를 나타내는 술폰화 폴리아릴에테르술폰 공중합체를 합성하고, 이들로부터 직접 메탄올 연료전지용 이중층(層) 고분자 전해질 막을 제조하였다. 우수한 이온 전도특성을 나타내는 술폰화도 50%의 공중합체를 사용하여 전해질 막의 모체(母體) 전도층을 제조하고, 이들의 한쪽 표면에 술폰화도 10%의 공중합체를 도포한 후 건조하여 낮은 메탄올 투과 특성의 코팅층을 형성시켰다. 도포되는 공중합체의 질량비를 5~20%로 조절함으로써 코팅 층 두께에 따른 전해질 막의 특성 변화를 고찰하였으며, 형성된 코팅 층을 막-전극 접합체의 음극 면에 접합시켜 운전 시 메탄올 연료와 직접 접촉하도록 하였다. 이중층 형성 공정을 통하여, 단일 전해질 막과 동등한 수준의 이온 전도 특성을 유지하면서도, 전해질 막을 통한 메탄올 투과 특성이 현저히 개선된 우수한 효율의 고분자 전해질 막 제조가 가능하였다. 작동 온도 $60^{\circ}C$, 2 M의 메탄올 공급 환경에서 수행된 연료 전지 성능 평가 결과, 막-전극 접합체 출력 밀도는 5%의 질량비에서 최대 $134.01\;mW/cm^2$였으며, 이로부터 상용 나피온 115 대비 105.5%의 향상된 성능 효율을 확인할 수 있었다.

Keywords

References

  1. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, 'Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells,' Solid State Ionics, 147, 189 (2002) https://doi.org/10.1016/S0167-2738(02)00011-5
  2. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, 'Development and performance characterization of new electrocatalysts for PEMFC,' Journal of Power Sources, 106, 206 (2002) https://doi.org/10.1016/S0378-7753(01)01040-0
  3. Y. M. Lee and H. B. Park, 'Development of Membrane Materials for Direct Methanol Fuel Cell,' Membrane Journal, 10, 103 (2000)
  4. S. Gottesfeld and T. A. Zawodzinski, 'In advances in dlectrochemical science and engineering,' R. C. Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias, Eds., 5, pp. 195, Wiley-VCH, Weinheim, Germany (1997)
  5. J. Kerres, W. Cui, and S. Reichle, 'New sulfonated engineering polymers via the Metalation, Route. 1.: Sulfonated Poly(ethersu1fone) PSU Udel via Metalation- Sulfination-Oxidation,' J. Polymer Sci.: Part A Polymer Chemistry, 1, 2421 (1996)
  6. M.-H. Chen, T.-C. Chiao, and T.-W. Tseng, 'Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes,' J. Appl. Polym. Sci., 61, 1205 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  7. J. Kerres, W. Cui, R. Disson, and W. Neubrand, 'Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups,' J. Membr. Sci., 139, 211 (1998) https://doi.org/10.1016/S0376-7388(97)00253-6
  8. C. Hasiotis, V. Deimede, and C. Kontoyannis, 'New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole,' Electrochimica Acta, 46, 2401 (2001) https://doi.org/10.1016/S0013-4686(01)00437-6
  9. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, 'Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells,' J. Appl. Polym. Sci., 77, 1250 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  10. M. Rikukawa and K. Sanui, 'Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers,' Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  11. T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, 'Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene),' Solid State Ionics, 106, 219 (1998) https://doi.org/10.1016/S0167-2738(97)00512-2
  12. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, 'Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes,' Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  13. K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,' J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  14. D. J. Jones and J. Roziere, 'Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications,' J. Membr. Sci., 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  15. B.-K. Park, S.-H. Kong, Y. J. Kim, and S. Y. Nam, 'Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes,' Membrane Journal, 15, 165 (2005)
  16. M.-C. Yoo, B.-J. Chang, J.-H. Kim, S.-B. Lee, and Y.-T. Lee, 'Sulfonated Perfluorocyclobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells,' Membrane Journal, 15, 355 (2005)
  17. J.-H. Kim, J.-P. Shin, I.-J. Park, S.-B. Lee, and D.-H. Seo, 'Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell,' Membrane Journal, 14, 173 (2004)
  18. G. Inzelt, M. Pineri, J.W. Schultze, and M. A. Vorotyntsev, 'Electron and proton conducting polymers: recent developments and prospects,' Electrochimica Acta, 45, 2403 (2000) https://doi.org/10.1016/S0013-4686(00)00329-7
  19. Y. M. Lee and S. Y. Lee, 'Poly(vinyl alcohol) Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Application,' Membrane Journal, 14, 240 (2004)
  20. S. Saga, H. Matsumoto, K. Saito, M. Minagawa, and A. Tanioka, 'Polyelectrolyte membranes based on hydrocarbone polymer containing fullerene,' J. Power Sources, 176, 16 (2008) https://doi.org/10.1016/j.jpowsour.2007.10.017
  21. M. Rikukawa, D. Inagaki, K. Kaneko, Y. Takeoka, I. Ito, Y. Kanzaki, and K. Sanui, 'Proton conductivity of smart membranes based on hydrocarbon polymers having phosphoric acid groups,' Journal of Molecular Structure, 739, 153 (2005) https://doi.org/10.1016/j.molstruc.2004.04.034
  22. M. Kawahara, M. Rikukawa, and K. Sanui, 'Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(benzimidazole),' Polym. Adv. Technol., 11, 544 (2000) https://doi.org/10.1002/1099-1581(200008/12)11:8/12<544::AID-PAT3>3.0.CO;2-N
  23. M. Kawahara, M. Rikukawa, K. Sanui, and N. Ogata, 'Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films,' Solid State Ionics, 136, 1193 (2000) https://doi.org/10.1016/S0167-2738(00)00596-8
  24. R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, and S.-H. Moon, 'Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications,' J. Membr. Sci., 309, 156 (2008) https://doi.org/10.1016/j.memsci.2007.10.013
  25. J. A. Kerres, 'Development of ionomer membranes for fuel cells,' J. Membr. Sci., 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  26. W. L. Harrion, M. A. Hickner, Y. S. Kim, and J. E. McGrath, 'Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building block: synthesis, characterization, and performance - A topical review,' Fuel Cells, 5, 201 (2005) https://doi.org/10.1002/fuce.200400084
  27. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells,' Sep. Purif. Technol., 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  28. Y. Chen, Y. Meng, S. Wang, S. Tian, Y. Chena, and A. S. Hay, 'Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application,' J. Membr. Sci., 280, 433 (2006) https://doi.org/10.1016/j.memsci.2006.01.052
  29. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, 'Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications,' J. Appl. Polym. Sci., 100, 4595 (2006) https://doi.org/10.1002/app.22803
  30. J.-Y. Park, J.-K. Choi, K.-J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, 'Effects of Mixed Casting Solvents on Morphology and Characteristics of Sulfonated Poly(aryl ether sulfone) Membranes for DMFC Applications,' Membrane Journal, 18, 282 (2008)
  31. P. J. James, T. J. McMaster, J. M. Newton, and M. J. Miles, 'In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM,' Polymer, 41, 4223 (2000) https://doi.org/10.1016/S0032-3861(99)00641-2
  32. A. Casalegno and R. Marchesi, 'DMFC performance and methanol cross-over: Experimental analysis and model validation,' J. Power Sources, 185, 318 (2008) https://doi.org/10.1016/j.jpowsour.2008.06.071
  33. F. Liu and C.-Y. Wang, 'Water and methanol crossover in direct methanol fuel cells - Effect of anode diffusion media,' Electrochem. Acta, 53, 5517 (2008) https://doi.org/10.1016/j.electacta.2008.03.011
  34. S. Eccarius, B. Lee Garcia, C. Hebling, and J. W. Weidner, 'Experimental validation of a methanol crossover model in DMFC applications,' J. Power Sources, 179, 723 (2008) https://doi.org/10.1016/j.jpowsour.2007.11.102