Biodegradation of Diesel in Sea Water by Rhodococcus fascians Isolated from a Petroleum-contaminated Site

유류 오염 토양에서 분리된 Rhodococcus fascians를 이용한 해수에서의 디젤유의 분해

  • Published : 2009.10.29

Abstract

Contamination of marine environment with hazardous and toxic chemicals is more common these days. Bioremediation is the application of microorganism or microbial processes to degrade environmental contaminant. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The objective of this study is biodegradation of diesel in sea water by using Rhodococcus fascians which is isolated petroleum-contaminated soil. R. fascians was cultured on sea water containing diesel to determine the diesel degradability. Changes in biodegradability of diesel with various inoculum sizes, diesel concentrations, initial pH, and culture temperature were analyzed by TPH analysis using gas chromatography. The inoculum size 2% was effective for biodegrdation of diesel in sea water by R. fascians. When diesel concentration was 5%, the growth of cell was inhibited by the toxicity of diesel. The optimal temperature and initial pH for degradation of diesel in sea water were $27^{\circ}C$ and pH 8.

본 실험에 사용된 균주는 유류로 오염된 지역의 토양시료로부터 직접 분리한 Rhodococcus fascians로 이전 연구에서 항공유의 분해에 효과가 있는 것으로 밝혀진 균주이다. 디젤유가 항공유보다 R. fascians의 생장에 영향을 주는 것으로 나타났다. 해수중의 디젤 분해를 위해서는 2%이상의 접종량이 효과적이며 접종량이 증가할 경우 잔류량이 더 감소하였으나 큰 차이는 없었다. 해수중의 디젤이 5%이상에서는 디젤유의 독성에 의해 R. fascians의 생장이 저해를 받아 디젤 잔류량이 높게 나타났다. R. fascians는 pH 8에서 가장 높은 디젤 분해속도를 보였으며 비교적 넓은 pH 범위에서 디젤 분해도가 유지되는 것으로 나타났다. R. fascians의 최적 성장온도 보다 높은 $32^{\circ}C$에서는 디젤의 분해에 온도증가에 따른 자연분해의 영향이 큰 것으로 나타났다. R. fascians의 해수중 디젤유 분해의 최적온도는 $27^{\circ}C$로 최적 생장온도에서 분해가 활발히 이루어지는 것을 알 수 있었다.

Keywords

References

  1. U. S. EPA (1997) Analysis of Selected Enhancement for Soil Vapor Extraction. EPA-542-R-97
  2. Cole, G. M. (1994) Assessment and Remediation of Petroleum Contaminated Sites. pp. 37-74. CRC Press, Inc., USA
  3. Mackay, D. W. (1985) Environmental Fate of Diesel Fuel Spills on Land. Report for Association of American Railroads. University of Toronto, Canada
  4. Suthersan, S. S. (1997) Remediation Engineering: Design Concepts. p. 24. Lewis Publishers, Inc, USA
  5. Hwang, E. Y., W. Namkoong, and J. S. Park (2000) Effect of environmental parameters on the degradation of petroleum hydrocarbons in soil. J. KoSES. 2: 85-96
  6. Nam, B. H., B. J. Park, and H. S. Yun (2008) Biodegradation of JP-8 by Rhodococcus fascians isolated from petroleum contaminated soil. Korean Chem. Eng. Res. 46: 819-823
  7. Park, B. J., Y. H. Noh, and H. S. Yun (2008) Biodegradation of JP-8 in soil column by Rhodococcus fascians isolated from petroleum contaminated soil. Korean J. Biotechnol. Bioeng. 23: 479-483
  8. Alexander, M. (1999) Biodegradation and bioremediation. pp. 317-362 Academic Press, Inc., San Diego, USA
  9. Andreoni. V., L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell'Amico, M. Colombo, and L. Gianfreda (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57: 401-412 https://doi.org/10.1016/j.chemosphere.2004.06.013
  10. Dickson, A. G. (1993) The measurement of sea water pH. Marine Chem. 44: 131-142 https://doi.org/10.1016/0304-4203(93)90198-W