DOI QR코드

DOI QR Code

Effect of Dietary Intake of Ultra-fine or Nano-Scale Pulverized Cornstarch on the Growing Performance and Gut Function in Rats

Nano-Scale Pulverizer (NSP)와 Ultra-Fine Pulverizer (UFP)로 물리적 변성된 옥수수전분 섭취가 흰쥐의 성장능력 및 장기능에 미치는 영향

  • Lee, Hye-Sung (Department of Foods and Nutrition, Kookmin University) ;
  • Ju, Da-Nim (Department of Foods and Nutrition, Kookmin University) ;
  • Kim, Bo-Ram (Department of Foods and Nutrition, Kookmin University) ;
  • Kim, Sun-Hee (Department of Foods and Nutrition, Kookmin University) ;
  • Han, Myung-Ryun (Department of Food and Nutrition, Hyejeon College) ;
  • Kim, Myung-Hwan (Department of Food Engineering, Dankook University) ;
  • Chang, Moon-Jeong (Department of Foods and Nutrition, Kookmin University)
  • Published : 2009.12.31

Abstract

The objectives of this study was to determine whether a new physically modified cornstarch by ultra-fine- or nanoscale pulverizer to reduce particle size offers better bioactive function than native cornstarch in weanling Sprague-Dawley rats. Male weaning Sprague-Dawley rats were fed diets containing native cornstarch (NAC), ultra fine pulverized cornstarch (UFC) or nano-scale pulverized cornstarch (NSC) for 4 weeks. In vitro rate of starch hydrolysis, growth performance, organ weight, intestine length intestinal proliferation and the fermentation by Bifidobacterium of rat cecum were evaluated. The diet with reduced particle size (UFC or NSC) significantly increased body weight gain and organ weight. Feed efficiency was increased in NSC fed rats and was not affected in UFC fed rats. Intestinal proliferation was decreased in NSC group. Reduction of particle size also increased cecal short chain fatty acid concentration and the growth and acidifying activity of Bifidobacterium. It is concluded that a reduction of particle size of starch granules by physically modification may increase growing performance and gut function.

본 연구는 ultra-fine pulverizer 또는 nano-scale pulverizer로 초미세분쇄시켜 입자크기가 감소된 옥수수전분의 섭취로 인한 생리적 기능성을 탐색한 결과는 다음과 같다. 1) 각 실험식이군의 식이 섭취량은 UFC군, NAC군은 차이가 없었으며, NSC군에서 유의하게 낮았다. NSC군의 식이 섭취량이 낮았음에도 불구하고 체중증가량이 많아 식이효율은 NSC군에서 가장 높았다. 2) 간, 신장의 무게는 UFC군 > NSC군 > NAC군순으로 높았다. 3) 소장의 무게는 UFC군이 NAC군에 비해 유의하게 높았으며, 소장의 길이는 각 실험군에서 유의적인 차이가 없었으며 맹장의 무게 및 장통과 시간도 유의적인 차이가 없었다. 4) 맹장내 단쇄지방산의 함량은 NSC군이 UFC군이나 NAC군에 비해 유의하게 높아 장내 미생물에 의한 발효가 활성화되고 있었으며 장내 Bifidobacterium 증식도 NSC군이 다른 군에 비해 활발하였다. 5) 소장세포의 증식은 NSC군에서 낮았다. 이상의 결과로 볼때 nano-scale로 입자의 크기가 감소된 옥수수 전분은 소화흡수율을 증가시켜 성장능력을 증진하는 것으로 나타났으며, Bifidobacterium 증식 촉진, 단쇄 지방산 생성을 촉진하는 효과를 갖고 있어 상대적인 영양밀도를 높이는 기능성을 갖고 있는 것으로 나타났다. 따라서 장기능이 미숙한 유아기, 장기능이 불완전하거나 미약한 환자, 노인등의 특수목적 영양식의 기본재료로 활용될 수 있음을 제안한다.

Keywords

References

  1. Eliasson AC, Gudmundsson M. Starch: physicochemical and functional aspects. In Eliasson A-C, editor. Carbohydrates in food. New York: Marcer Dekker; 2006. p.431-503
  2. CFR, Code of Federal Regulations. Food starch modified. Title21 Chapter 1, Part 172 Sec172.892. In Food additives permitted for direct addition to food for human consumption. Washington, DC: US GPO; 2006
  3. Jacobs H, Delcour JA. Hydrothermal modifications of granular starch, with retention of granular structure. A review. J Agric Food Chem 1998; 46: 2895-2905 https://doi.org/10.1021/jf980169k
  4. Holm J, Björck I, Asp NG, Sjöberg LB, Lundquist I, Starch availability in vitro and in vivo after flaking steam-cooking and popping of wheat. J Cereal Sci 1985; 3: 193-206 https://doi.org/10.1016/S0733-5210(85)80013-8
  5. Stephen AM, Haddad AC, Phillips SF. Passage of carbohydrate into the colon. Direct measurements in human. Gastroenterology 1983; 85: 589-595
  6. O'Riordan K, Muljadi N, Conway P. Characterization of factors affecting attachement of Bifidobacterium species to amylomaize starch granules. J Appl Microbiol 2001; 90: 749-754 https://doi.org/10.1046/j.1365-2672.2001.01304.x
  7. Champ M. Deloty-Larval J. Effects of processing on chemical characteristics and nutritive value of cereals. Anim Prod 1991; 52: 564-565
  8. Oberdörster G, Oerdrster E, Oberdrster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823-839 https://doi.org/10.1289/ehp.7339
  9. Sanguansri P, Augustin MA. Nanoscale material development a food industry perspective. Trends Food Sci Technol 2006; 17: 547-556 https://doi.org/10.1016/j.tifs.2006.04.010
  10. Park JH, Kim MH, Chang MJ. The effect of dietary ultra finely pulverized rice starch on growth performance and develo0pment of small intestine. Korean J Food Culture 2007; 22: 645-651
  11. Liu H, Corke H, Ramsden L. Functional properties and enzymatic digestibility of cationic and cross-linked cationic ae, wx, and normal maize starch. J Agric Food Chem 1999; 47(7): 2523-2528 https://doi.org/10.1021/jf9811471
  12. Schutte, B, Reynders MM, Bosman FT, Glijham GH. Effect of tissue fixation on anti-bromodeoxyuridine immunohistochemisty. J Histochem Cytochen 1987; 35(11): 1343-1345
  13. Chen HL, Lu YH, Lin J, Ko LY. Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutr Res 2000; 20(12): 1725-1733 https://doi.org/10.1016/S0271-5317(00)00274-8
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-Phenol reagent. J Biol Chem 1951; 193 (1): 265-275
  15. Thacker PA. Effect of micronization on the performance of growing/ finishing pigs fed diets based on hulled and hulless barley. Anim Feed Sci Technol 1999; 79: 29-41 https://doi.org/10.1016/S0377-8401(99)00018-8
  16. Fernades TH, Hutton K, Smith WC. A note on the use of micronized barley for growing pigs. Anm Prod 1975; 20: 307-310 https://doi.org/10.1017/S0003356100035327
  17. Huang SX, Sauer WC, Pickard M, Li S, Hardin RT. Effect of micronization on energy, starch and amino acid digestibility in hulless barley for young pigs. Can J Anim Sci 1998; 78: 81-87 https://doi.org/10.4141/A97-026
  18. Healy BJ, Hancock JD, Kennedy GA, Bramel-Cox PJ, Behnke KC, Hines RH. Optimum particle size of corn and hard and soft sorghum for nursery pigs. J Anim Sci 1994; 72: 2227-2236
  19. Leeds AR, Bolster NR, Andrews R, Truswell AS. Meal viscosity, gastric emptying and glucose absorption in the rat. Proc Nutr Soc 1979; 38(2): 44A
  20. Hoseney RC. Principles of cereal science and technology. American Association of cereal chemists, St Paul, USA; 1994
  21. Morrison WR, Tester RF. Properties of damage starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. J Cereal Sci 1994; 20: 69-77 https://doi.org/10.1006/jcrs.1994.1046
  22. Martinez-Bustos F, Lopez-Soto M, San Martin-Martinez E, Zazuet- Morales JJ, Velez-Medina JJ. Effect of high energy milling on some functional properties of jicama starch (Pachyrrhizus erosusL. Urban) and cassava starch (Manihot esculenta Crantz). J Food Engineering 2007; 78: 1212-1220 https://doi.org/10.1016/j.jfoodeng.2005.10.043
  23. Medel P, Salado S, de Blas JC, Mateos GG. Processed cereals in diets for early-weaned piglets. Anim Feed Sci Technol 1999; 82, 145-156 https://doi.org/10.1016/S0377-8401(99)00111-X
  24. Englyst HN, Cummings JH, Digestion of the polysaccharides of some cereal foods in the human small intestine. Am J Clin Nutr 1985; 42: 778-787
  25. Morita T, Kasaoka S, Oh-hashi A, Ikai M, Numarsaki Y, Kiriyama S. Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch. J Nutr 1998; 128: 1156-1164
  26. Seol SM, Bang MH, Heong MK, Kim WK. Effects of high amylose starch on gut functions in rats. Korean J Nutr 2003; 36: 10-116
  27. Bielecka M, Biedrzycka E, Majkowska A. Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int 2002; 35: 125-131 https://doi.org/10.1016/S0963-9969(01)00173-9
  28. Ramarkrishna BS, Venkatraman S, Srinivasan P, Dash P, Young GP, Binder HJ. Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med 2000; 342: 308-313 https://doi.org/10.1056/NEJM200002033420502
  29. von Engelhardt W, Bartels J, Kirschberger S, Meyer zu Dutingdorf HD, Busche R. Role of short-chain fatty acids in the hind gut. Vet Q 1998; 20(Suppl 3): S52-59
  30. Mathers JC, Smith H, Cartes S. Dose-response effects of raw potato starch on small-intestinal escape, large bowel fermentation and gut transit time in the rat. Br J Nutr 1997; 78: 1015-1029 https://doi.org/10.1079/BJN19970215
  31. Yanai T, Matsumoto C, Takashima H, Yoshida K, Sakai H, Isowa K, Iwasaki T, Sato Y, Masegi T. Immunohistochemical demonstration of S-phase cells by antibromodeoxyuridine monoclonal antibody in cattle tissues. J Comp Pathol 1998; 114: 265-272 https://doi.org/10.1016/S0021-9975(96)80048-X
  32. Reville M, Grosse F, Kachelhoffer J, Doffoel, M, Raul F. Ileal compensation for age-dependent loss of jejunal function in rats. J Nutr 1991; 121: 498-503
  33. Sangild PT. Gut responses to enteral nutrition in preterm infants and animals. Exp Biol Med 2006; 231: 1695-1711
  34. Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract: a review. Gastroenterology 1976; 70: 790-810
  35. Zabielski R, Le Huerou-Luron I, Guilloteau P. Development of gastrointestinal and pancreatic functions in mammalians (mainly bovine and porcine species): influence of age and ingested food. Reprod Nutr Dev 1999; 39: 5-26 https://doi.org/10.1051/rnd:19990101

Cited by

  1. Effect of Corn Extracts on Mouse IL-2 Cytokine Production by Peritoneal Macrophage and the Ratio of IFN-γ, IL-10 Cytokine vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.362
  2. 4주 동안의 옥수수 추출물 투여가 마우스 비장세포와 대식세포 생성에 미치는 영향 vol.24, pp.1, 2011, https://doi.org/10.9799/ksfan.2011.24.1.065