DOI QR코드

DOI QR Code

Finite-element investigation of the center of resistance of the maxillary dentition

상악 치아군의 저항중심의 위치에 관한 3차원 유한요소 해석

  • Jeong, Gwang-Mo (Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Sung, Sang-Jin (Department of Orthodontics, University of Ulsan, Asan Medical Center) ;
  • Lee, Kee-Joon (Department of Orthodontics, Yonsei University College of Dentistry) ;
  • Chun, Youn-Sic (Department of Orthodontics, Ehwa Womans University Mokdong Hospital) ;
  • Mo, Sung-Seo (Department of Orthodontics, The Catholic University of Korea, St. Mary's Hospital)
  • 정광모 (가톨릭대학교 임상치과학대학원 교정과) ;
  • 성상진 (울산대학교 서울아산병원 치과교정과) ;
  • 이기준 (연세대학교 치과대학 교정학교실) ;
  • 전윤식 (이화여자대학교 목동병원 치과교정과) ;
  • 모성서 (가톨릭대학교 성모병원 치과교정과)
  • Published : 2009.04.30

Abstract

Objective: The aim of this study was to investigate the 3-dimensional position of the center of resistance of the 4 maxillary anterior teeth, 6 maxillary anterior teeth, and the full maxillary dentition using 3-dimensional finite element analysis. Methods: Finite element models included the whole upper dentition, periodontal ligament, and alveolar bone. The crowns of the teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces to the teeth. A force of 100 g or 200 g was applied to the wire beam extended from the incisal edge of the upper central incisor, and displacement of teeth was evaluated. The center of resistance was defined as the point where the applied force induced parallel movement. Results: The results of study showed that the center of resistance of the 4 maxillary anterior teeth group, the 6 maxillary anterior teeth group, and the full maxillary dentition group were at 13.5 mm apical and 12.0 mm posterior, 13.5 mm apical and 14.0 mm posterior, and 11.0 mm apical and 26.5 mm posterior to the incisal edge of the upper central incisor, respectively. Conclusions: It is thought that the results from this finite element models will improve the efficiency of orthodontic treatment.

최근 골내 고정 형태의 temporary anchorage device (TAD)를 많이 이용하게 되면서 다양한 위치로부터 그리고 강한 교정력을 이용할 수 있게 되었다. 이에 따라 치아군의 이동양상을 예측하고 치료계획을 세우기 위하여 다양한 치아군의 저항중심의 위치에 대한 이해가 필요하게 되었다. 본 연구에서는 3차원 유한요소해석을 이용하여 상악 4전치, 6전치 그리고 상악 전 치열에서 3차원적 저항중심의 위치를 조사하고자 하였다. 이를 위하여 상악 전치열 14개 치아와 치근막 및 치조골의 3차원 유한요소모델을 제작하였고, 각 치아군별로 치관부를 협측, 설측 호선, 설측 splint wire로 고정하여 개별 치아이동을 최소화하고 적용된 힘이 치아에 고루 분산되도록 하였다. 상악 중절치 절단연의 중점에서 연장된 와이어 빔에 수직, 수평으로 100 g 또는 200 g의 힘을 가하여 치아의 변위를 해석하고, 각 치아군에 속한 치아들이 최대한 평행이동 되는 힘의 적용부위를 저항중심으로 정의하였다. 연구결과 상악 4전치군의 저항중심은 상악 중절치 절단연으로부터 치근방향 13.5 mm, 후방 12.0 mm, 상악 6전치군은 상악 중절치 절단연으로부터 치근방향 13.5 mm, 후방 14.0 mm에 위치하였으며 상악 전치열군의 저항중심은 상악 중절치 절단연으로부터 치근방향 11.0 mm, 후방 26.5 mm에 위치하였다. 본 유한요소 실험모델을 이용하여 얻은 결과는 교정치료의 효율성을 높일 수 있으리라 생각된다.

Keywords

References

  1. Lee HA, Park YC. Treatment and posttreatment changes following intrusion of maxillary posterior teeth with miniscrew implants for open bite correction. Korean J Orthod 2008;38:31-40 https://doi.org/10.4041/kjod.2008.38.1.31
  2. Kim SJ, Chun YS, Jung SH, Park SH. Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances. Korean J Orthod 2008;38:376-87 https://doi.org/10.4041/kjod.2008.38.96.376
  3. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307
  4. Reimann S, Keilig L, Jager A, Bourauel C. Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors. Eur J Orthod 2007;29:219-24 https://doi.org/10.1093/ejo/cjl086
  5. Lee HK, Chung KR. The vertical location of the center of resistance for maxillary six anterior teeth during retraction using three dimensional finite element analysis. Korean J Orthod 2001;31:425-38
  6. Pedersen E, Isidor F, Gjessing P, Andersen K. Location of centres of resistance for maxillary anterior teeth measured on human autopsy material. Eur J Orthod 1991;13:452-8 https://doi.org/10.1093/ejo/13.6.452
  7. Choy K, Kim KH, Burstone CJ. Initial changes of centres of rotation of the anterior segment in response to horizontal forces. Eur J Orthod 2006;28:471-4 https://doi.org/10.1093/ejo/cjl023
  8. Billiet T, de Pauw G, Dermaut L. Location of the centre of resistance of the upper dentition and the nasomaxillary complex. An experimental study. Eur J Orthod 2001;23:263-73 https://doi.org/10.1093/ejo/23.3.263
  9. Woo JY, Park YC. Experimental study of the vertical location of the centers of resistance for maxillary anterior teeth during retraction using the laser reflection technique. Korean J Orthod 1993;23:375-90
  10. Park GH, Shon BW. The center of resistance of the maxillary anterior segment in the horizontal plane during intrusion by using laser reflection technique. Korean J Orthod 1993;23:619-32
  11. Vanden Bulcke MM, Burstone CJ, Sachdeva RC, Dermaut LR. Location of the center of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofac Orthop 1987;91:375-84 https://doi.org/10.1016/0889-5406(87)90390-8
  12. Matsui S, Caputo AA, Chaconas SJ, Kiyomura H. Center of resistance of anterior arch segment. Am J Orthod Dentofacial Orthop 2000;118:171-8 https://doi.org/10.1067/mod.2000.103774
  13. Coolidge E. The thickness of the human periodontal membrane. J Am Dent Assoc 1937;24:1260-67
  14. Kronfeld R. Histologic study of the influence of function on the human periodontal membrane. J Am Dent Assoc 1931;18:1942
  15. Block PL. Restorative margins and periodontal health: a new look at an old perspective. J Prosthet Dent 1987;57:683-9 https://doi.org/10.1016/0022-3913(87)90363-5
  16. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92:499-505 https://doi.org/10.1016/0889-5406(87)90232-0
  17. Jeong HS, Moon YS, Cho YS, Lim SM, Sung SJ. Factors influencing the axes of anterior teeth during SWA en masse sliding retraction with orthodontic mini-implant anchorage: a finite element study. Korean J Orthod 2006;36:339-48
  18. Chung AJ, Cho JH, Kim SC, Kim US, Lee SH, Kang SS, et al. The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method. Korean J Orthod 2007;37:98-113
  19. Zeigler A, Keilig L, Kawarizadeh A, Jäger A, Bourauel C. Numerical simulation of the biomechanical behaviour of multi-root teeth. Eur J Orthod 2005;27:333-9 https://doi.org/10.1093/ejo/cji020
  20. Poppe M, Bourauel C, J$\ddot{a}$ger A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 2002;63:358-70 https://doi.org/10.1007/s00056-002-0067-8
  21. Andrews Lf. Straight wire, the concept and appliance, L.A.. Wells Co.; 1989
  22. Germane N. Bentley BE Jr, Isaacson RJ. Three biologic variables modifying faciolingual tooth angulation by straight-wire appliannces. Am J Orthod Dentofac Orthop 1989;96:312-19 https://doi.org/10.1016/0889-5406(89)90350-8
  23. Park CK, Yang WS. A three-dimentional finite element analysis on the location of center of resistance during intrusion of upper anterior teeth. Korean J Orthod 1997;27:259-72
  24. Chung KR, Oh MY, Ko SJ. Corticotomy-assisted orthodontics. J Clin Orthod 2001;35:331-9
  25. Sugawara J, Daimaruya T, Umemori M, Nagasaka H, Takahashi I, Kawamura H, Mitani H. Distal movement of mandibular molars in adult patients with the skeletal anchorage system. Am J Orthod Dentofacial Orthop 2004;125:130-8 https://doi.org/10.1016/j.ajodo.2003.02.003
  26. Park YC, Lee SY, Kim DH, Lee SH. Intrusion of posterior teeth using mini-screw implants. Am J Orthod Dentofacial Orthop 2003;123:690-4 https://doi.org/10.1016/S0889-5406(03)00047-7
  27. Chung KR, Kook YA, Kim SH, Mo SS, Jung JA. Class II malocclusion treatment by combining a lingual retractor and a palatal plate. Am J Orthod Dentofac Orthop 2008;133:112-23 https://doi.org/10.1016/j.ajodo.2006.04.033
  28. Chung KR, Kim SH, Kook YA. The C-orthodontic Microimplant. J Clin Orthod 2004;38:478-86
  29. Min YG, Hwang CJ. A study about the change of locations of the center of resistance according to the decrease of alveolar bone heights and root lengths during anterior teeth retraction using the laser reflection technique. Korean J Orthod 1998;29:165-81
  30. Dykman JFP. Distribution of forces in orthodontic treatment [Thesis]. Nijmegan, HTe Netherlands: University of Nijmegam 1969
  31. T$\ddot{u}$rk T, Elekdag-T$\ddot{u}$rk S, Dincer M. Clinical evaluation of the centre of resistance of the upper incisors during retraction. Eur J Orthod 2005;27:196-201 https://doi.org/10.1093/ejo/cjh096
  32. Lee HK, Chung KR. The vertical location of the center of resistance for maxillary six anterior theeth during retraction using three dimentional finite element analysis. Korean J Orthod 2001;31:425-38
  33. Bourauel C, Keilig L, Rahimi A, Reimann S, Ziegler A, J$\ddot{a}$ger A. Computer-aided analysis of the biomechanics of tooth movements. Int J Comput Dent 2007;10:25-40

Cited by

  1. Treatment of skeletal Class II adult patient with vertical and transverse problems caused by nasal airway obstruction using microimplant anchorage vol.39, pp.4, 2009, https://doi.org/10.4041/kjod.2009.39.4.257
  2. 치조골 상실에 따른 상악 치아군 저항중심의 변화에 관한 유한요소해석 vol.39, pp.5, 2009, https://doi.org/10.4041/kjod.2009.39.5.278
  3. Locating the center of resistance of maxillary anterior teeth retracted by Double J Retractor with palatal miniscrews. vol.80, pp.6, 2009, https://doi.org/10.2319/121409-712.1
  4. 교정용 미니스크류를 이용한 연속호선과 분절호선의 유한요소분석 vol.41, pp.4, 2009, https://doi.org/10.4041/kjod.2011.41.4.237
  5. 교정용 미니스크류를 이용한 하악 전치 함입 시 변위양상의 3차원 유한요소분석 vol.41, pp.6, 2009, https://doi.org/10.4041/kjod.2011.41.6.384
  6. Distalization pattern of the maxillary arch depending on the number of orthodontic miniscrews vol.83, pp.2, 2009, https://doi.org/10.2319/032212-123.1
  7. 치주인대의 비선형성을 고려한 치아 교정용 호선의 굽힘 최적화 vol.12, pp.6, 2009, https://doi.org/10.14775/ksmpe.2013.12.6.077
  8. Combined use of miniscrews and continuous arch for intrusive root movement of incisors in Class II division 2 with gummy smile vol.84, pp.5, 2009, https://doi.org/10.2319/080713-587.1
  9. Maxillary anterior en masse retraction using different antero-posterior position of mini screw: a 3D finite element study vol.17, pp.1, 2016, https://doi.org/10.1186/s40510-016-0143-z
  10. Comparative assessment of the efficacy of closed helical loop and T-loop for space closure in lingual orthodontics—a finite element study vol.19, pp.1, 2009, https://doi.org/10.1186/s40510-018-0210-8
  11. Advanced biomechanics for total arch movement and non-surgical treatment for hyperdivergent faces vol.24, pp.1, 2009, https://doi.org/10.1053/j.sodo.2018.01.008
  12. Determination of the centre of resistance during en masse retraction combined with corticotomy: finite element analysis vol.45, pp.1, 2018, https://doi.org/10.1080/14653125.2017.1405138
  13. Comparison of conventional methods of simultaneous intrusion and retraction of maxillary anterior: a finite element analysis vol.45, pp.4, 2018, https://doi.org/10.1080/14653125.2018.1525928
  14. Finite Element Analysis of Stress in Maxillary Dentition during En-masse Retraction with Implant Anchorage vol.60, pp.1, 2009, https://doi.org/10.2209/tdcpublication.2017-0055
  15. The 3-dimensional zone of the center of resistance of the mandibular posterior teeth segment vol.156, pp.3, 2009, https://doi.org/10.1016/j.ajodo.2018.10.017
  16. Biomechanical considerations for total distalization of the maxillary dentition using TSADs vol.26, pp.3, 2020, https://doi.org/10.1053/j.sodo.2020.06.011
  17. Correction of a gummy smile and lip protrusion by orthodontic retreatment with lingual appliances and temporary skeletal anchorage devices vol.160, pp.4, 2009, https://doi.org/10.1016/j.ajodo.2020.06.036