Properties of a Bacillus licheniformis Cellulase Produced by Recombinant Escherichia coli

대장균으로부터 생산된 Bacillus licheniformis WL-12의 Cellulase 특성

  • Park, Jong-Duk (Department of Food Science and Biotechnology, Woosong University) ;
  • Kim, Yeon-A (Department of Food Science and Biotechnology, Woosong University) ;
  • Yoon, Ki-Hong (Department of Food Science and Biotechnology, Woosong University)
  • 박종덕 (우송대학교 식품생물과학과) ;
  • 김연아 (우송대학교 식품생물과학과) ;
  • 윤기홍 (우송대학교 식품생물과학과)
  • Received : 2009.08.10
  • Accepted : 2009.09.01
  • Published : 2009.09.30

Abstract

Carboxymethyl celluase (cellulase) was purified from cell-free extract of the recombinant Escherichia coli carrying a Bacillus licheniformis WL-12 cellulase gene by DEAE-Sepharose and phenyl-Sepharose column chromatography with specific activity of 163 U/mg protein. The molecular mass of the purified enzyme was estimated to be approximately 49.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme had a pH optimum at 5.5 and a temperature optimum at $55^{\circ}C$. The activity of the enzyme was completely inhibited by SDS (5 mM), and slightly enhanced by $Cu^{2+}$ (5 mM). The cellulase was active on CMC, konjac, barely glucan and lichenan, while it did not exhibit activity towards xylan, locust bean gum, and p-nitrophenyl-$\beta$-glucopyranoside. The predominant products resulting from the cellulase hydrolysis were cellobiose and cellotriose for cellooligosaccharides including cellotriose, cellotetraose and cellopentaose. The enzyme could hydrolyze cellooligosaccharides larger than cellobiose.

Bacillus licheniformis WL-12의 carboxymethyl cellulase (cellulase) 유전자를 함유한 대장균 균체 파쇄상등액으로부터 DEAE-Sepharose와 Q-Sepharose 컬럼 크로마토그래피를 통해 cellulase를 정제하였다. 정제된 효소의 비활성은 163 U/mg이었으며, SDS-PAGE에 의해 측정된 분자량은 약 49.5 kDa으로 나타났다. pH 5.5와 $55^{\circ}C$에서 최대 반응활성을 보였으며, SDS (5mM)에 의해서는 cellulase의 활성이 완전히 저해되었고 $Cu^{2+}$5mM)에 의해서는 약간 증진되었다. 정제된 cellulase는 CMC, konjac, barley $\beta$-glucan과 lichenan을 가수분해하였으나 xylan, locust bean gum 및 p-nitrophenyl-$\beta$-glucopyranoside를 분해하지 못하였다. Cellooligosaccharides를 정제된 WL-12 cellulase로 분해하였을 때 cellobiose와 cellotriose가 주된 최종 반응산물로 관찰되었으며 cellobiose보다는 중합도가 큰 cellotriose, cellotetrasoe와 cellopentaose는 분해하였으나 cellobiose는 분해하지 못하는 것으로 확인되었다.

Keywords

References

  1. Berensmeier, S., S.A. Singh, J. Meens, and K. Buchholz. 2004. Cloning of the pelA gene from Bacillus licheniformis 14A and biochemical characterization of recombinant, thermostable, highalkaline pectate lyase. Appl. Microbiol. Biotechnol. 64, 560-567 https://doi.org/10.1007/s00253-003-1446-9
  2. Bischoff, K.M., A.P. Rooney, X.L. Li, S. Liu, and S.R. Hughes. 2006. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 28, 1761-1765 https://doi.org/10.1007/s10529-006-9153-0
  3. Bischoff, K.M., S. Liu, and S.R. Hughes. 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Proc. Biochem. 42, 1150-1154 https://doi.org/10.1016/j.procbio.2007.05.001
  4. Cavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37, 273-277 https://doi.org/10.1016/S0144-8617(98)00070-8
  5. Damiano, V.B., R. Ward, E. Gomes, H.F. Alves-Prado, and R. Da Silva. 2006. Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77-2. Appl. Biochem. Biotechnol. 129-132, 289-302 https://doi.org/10.1385/ABAB:129:1:289
  6. Ekowati, C., P. Hariyadi, A.B. Witarto, J.K. Hwang, and M.T. Suhartono. 2006. Biochemical characteristics of chitosanase from the Indonesian Bacillus licheniformis MB-2. Mol. Biotechnol. 33, 93-102 https://doi.org/10.1385/MB:33:2:93
  7. Feng, Y.Y., Z.M. He, L.F. Song, S.L. Ong, J.Y. Hu, Z.G. Zhang, and W.J. Ng. 2003. Kinetics of $\beta$-mannanase fermentation by Bacillus licheniformis. Biotechnol. Lett. 25, 1143-1146 https://doi.org/10.1023/A:1024517228270
  8. Hong, I.P., H.K. Jang, S.Y. Lee, and S.G. Choi. 2003. Cloning and characterization of a bifunctional cellulase-chotosanase gene from Bacillus licheniformis NBL420. J. Microbiol. Biotechnol. 13, 35-42
  9. Jung, K.H., Y.C. Chun, J.C. Lee, J.H. Kim, and K.H. Yoon. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18, 1077-1082 https://doi.org/10.1007/BF00129735
  10. Kim, S.H., S.G. Cho, and Y.J. Choi. 1997. Purification and characterization of carboxymethyl cellulase from Bacillus stearothermophilus No. 236. J. Microbiol. Biotechnol. 7, 305-309
  11. Kweun, M.A., J.Y. Shon, and K.H. Yoon. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32, 212-217
  12. Lee, U.J., B.K. Kim, B.H. Lee, K.I. Jo, N.K. Lee, C.H. Chung, Y.C. Lee, and J.W. Lee. 2009. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 untilizing rece hull. Bioresour. Technol. 99, 378-386 https://doi.org/10.1016/j.biortech.2006.12.013
  13. Li, W., X. Huan, Y. Zhou, Q. Ma, and Y. Chen. 2009. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from golden takin (Budorcas taxicolor Bedfordi). Biochem. Biophys. Res. Commun. 383, 397-400 https://doi.org/10.1016/j.bbrc.2009.04.027
  14. Liu, Y., J. Zhabg, Q. Liu, C. Zhang, and Q. Ma. 2004. Molecular cloning of novel cellulase genes cel9A and cel12A from Bacillus licheniformis GXN151 and synergism of their encoded polypeptides. Curr. Microbiol. 49, 234-238 https://doi.org/10.1007/s00284-004-4291-x
  15. Lloberas, J., J.A. Perez-Pons, and E. Querol. 1991. Molecular cloning, expression and nucleotide sequence of the endo-$\beta$-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur. J. Biochem. 197, 337-343 https://doi.org/10.1111/j.1432-1033.1991.tb15916.x
  16. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187 https://doi.org/10.1016/S0168-1656(00)00305-9
  17. Ou, M.S., N. Mohammed, L.O. Ingram, and K.T. Shanmugam. 2009. Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl. Biochem. Biotechnol. 155, 379-385 https://doi.org/10.1007/s12010-008-8509-4
  18. Sareen, R., U.T. Bornscheuer, and P. Mishra. 2005. Cloning, functional expression and characterization of an alkaline protease from Bacillus licheniformis. Biotechnol. Lett. 27, 1901-1907 https://doi.org/10.1007/s10529-005-3901-4
  19. Shahhoseini, M., A.A. Ziaee, and N. Ghaemi. 2003. Expression and secretion of an $\alpha$-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 95, 1250-1254 https://doi.org/10.1046/j.1365-2672.2003.02082.x
  20. Teng, D., J.H. Wang, Y. Fan, Y.L. Yang, Z.G. Tian, J. Luo, G.P. Yang, and F. Zhang. 2006. Cloning of $\beta$-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl. Microbiol. Biotechnol. 72, 705-712 https://doi.org/10.1007/s00253-006-0329-2
  21. Veith, B., C. Herzberg, S. Steckel, J. Feesche, K.H. Maurer, P. Ehrenreich, S. Baumer, A. Henne, H. Liesegang, R. Merkl, A. Ehrenreich, and G. Gottschalk. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7, 204-211 https://doi.org/10.1159/000079829
  22. Woo, S.M., H.K. Jung, and S.D. Kim. 2006. Cloning and characterization of a cellulase gene from a plant growth promoting rhizobacterium, Bacillus subtilis AH18 against phytophthora blight disease in red-pepper. Kor. J. Microbiol. Biotechnol. 34, 311-317
  23. Yoon, K.H. 2006. Cloning and expression of a Bacillus licheniformis cellulase gene. Kor. J. Microbiol. 42, 313-318