Production and Structural Analysis of Cellulose by Acetobacter sp. V6 Using Static Culture

정치배양을 이용하여 Acetobacter sp. V6의 셀룰로오스 생산 최적화 및 구조 분석

  • Kim, Jeong-Do (College of Natural Resources and Life Science, Pusan National University) ;
  • Jung, Ho-Il (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeong, Jin-Ha (College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Ki-Hyun (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeon, Young-Dong (College of Natural Resources and Life Science, Pusan National University) ;
  • Hwang, Dae-Youn (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Chung-Yeol (College of Natural Resources and Life Science, Pusan National University) ;
  • Son, Hong-Joo (College of Natural Resources and Life Science, Pusan National University)
  • 김정도 (부산대학교 생명자원과학대학) ;
  • 정호일 (부산대학교 생명자원과학대학) ;
  • 정진하 (부산대학교 생명자원과학대학) ;
  • 박기현 (부산대학교 생명자원과학대학) ;
  • 전영동 (부산대학교 생명자원과학대학) ;
  • 황대연 (부산대학교 생명자원과학대학) ;
  • 이충열 (부산대학교 생명자원과학대학) ;
  • 손홍주 (부산대학교 생명자원과학대학)
  • Received : 2009.08.28
  • Accepted : 2009.09.22
  • Published : 2009.09.30

Abstract

The optimal medium compositions for the production of bacterial cellulose (BC) by a Acetobacter sp. V6, which was isolated from the traditionally fermented vinegar in Korea, were investigated in static cultures. The optimum medium compositions for BC production were 3% glucose, 3% soytone, 0.8% $K_2HPO_4$, and 0.4% ethanol, respectively. Adding $NaH_2PO_4$ or $KH_2PO_4$ had not shown the increase in BC production. Under the optimum medium compositions, the highest BC production was 44.67 g/$m^2$ in 8 days and the thickness of BC pellicle was about 1 cm. Structural properties of BC produced in the optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose. No difference in the compositions between bacterial and plant celluloses, but BC showed unique micro-network structure and high crystallinity (82%).

한국 전통발효식초로부터 분리된 Acetobacter sp. V6에 의한 bacterial cellulose (BC) 생산을 위한 최적 배지조성을 정치배양을 이용하여 조사한 후, 생성된 BC의 구조적 특성을 검토하였다. 탄소원으로 glucose 3%, 질소원으로 soytone 3%가 선정되었다. 또한 인산염은 $K_2HPO_4$ 0.8%였으며, 추가로 첨가한 $NaH_2PO_4$$KH_2PO_4$는 BC 생산 증가를 나타내지 못하였다. 보조탄소원으로 ethanol 0.4%에서 가장 높은 BC 생산성을 나타내었다. 최적 배지조성하에서 배양 8일만에 최대 44.7 g/$m^2$의 BC가 생산되었으며, 배양 8일경, BC pellicle의 두께는 약 1 cm였다. BC의 구조는 Fourier-transform infrared spectroscopy 및 X-ray diffractometer를 이용하여 조사하였다. 최적배지에서 생성된 BC는 전형적인 cellulose type I임을 알 수 있었으며, 식물성 셀룰로오스와 성분의 차이가 없었다. 또한 독특한 미세망상구조로 이루어져 있었고, 높은 결정성을 나타내어 식물유래 셀룰로오스와 다른 독특한 물성을 나타내는 것으로 추정되었다.

Keywords

References

  1. Byrom, D. 1991. Microbiol cellulose, pp. 263-284. In D. Byrom (ed.), Biomaterials, Stockton Press, New York, N.Y., USA
  2. Cannon, R.E. and S.M. Anderson. 1991. Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435-447 https://doi.org/10.3109/10408419109115207
  3. Czaja, W.K., D.J. Young, M. Kawecki, and R.M. Brown, Jr. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromol. 8, 1-12 https://doi.org/10.1021/bm060620d
  4. Dudman, W.F. 1959. Cellulose production by Acetobacter acetigenum and other Acetobacter spp. J. Gen. Microbiol. 21, 312-326 https://doi.org/10.1099/00221287-21-2-312
  5. Embuscado, M.E., J.N. BeMiller, and J.S. Marks. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocoll. 10, 75-82 https://doi.org/10.1016/S0268-005X(96)80057-9
  6. Focher, B., M.T. Palma, M. Canetti, G. Torri, C. Cosentino, and G. Gastaldi. 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind. Crops Prod. 13, 193-208 https://doi.org/10.1016/S0926-6690(00)00077-7
  7. Fontana, J.D., A.M. De Souza, C.K. Fontana, I.L. Torriani, J.C. Moreschi, B.J. Gallotti, S.J. De Souza, G.P. Narcisoo, J.A. Bichara, and L.F.X. Farah. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24/25, 253-264 https://doi.org/10.1007/BF02920250
  8. Hestrin, S. and M. Schramm. 1954. Synthesis of cellulose by Acetobacter xylinum. Biochem. J. 58, 345-352 https://doi.org/10.1042/bj0580345
  9. Klemm, D., D. Schumann, U. Udhard, and S. Marsch. 2001. Bacterial synthesized cellulose - artficial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  10. Ko, J.Y., K.S. Shin, B.D. Yoon, and W.Y. Choi. 2002. Production of baterial cellulose by Axetobacter xylinum GS11. Kor. J. Appl. Microbiol. Biotechnol. 30, 57-62
  11. Matsuoka, M., T. Tsuchida, K. Matsushita, O. Adachi, and F. Yoshinaga. 1996. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotech. Biochem. 60, 575-579 https://doi.org/10.1271/bbb.60.575
  12. Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J. Ferment. Bioeng. 85, 598-603 https://doi.org/10.1016/S0922-338X(98)80012-3
  13. Oikawa T., T. Ohtoti, and M. Ameyama. 1995. Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Biosci. Biotech. Biochem. 59, 331-332 https://doi.org/10.1271/bbb.59.331
  14. Paek, H.S., J.S. Park, S.M. Jo, W.S. Lee, and K.J. Kim. 1993. The effects of preparation conditions of celluose/N-methylmorpholine-N-oxide solutions on physical properties of fibers. J. Korean Fiber Soc. 30, 569-577
  15. Rainer, J. and F.F. Luiz. 1986. Production and application of microbial cellulose. Polym. Degrad. Stab. 58, 101-106
  16. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger- Ohana, R. Mayer, S. Braun, E. de Vroom, G.A. van der Marel, J.H. van Boom, and M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279-281 https://doi.org/10.1038/325279a0
  17. Ross, P., Y. Aloni, H. Weinhouse, D. Michaeli, P. Weinberger-Ohana. R. Mayer, and M. Benziman. 1986. Control of cellulose synthesis in Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohyd. Res. 149, 101-117 https://doi.org/10.1016/S0008-6215(00)90372-0
  18. Sakran, M.A. 1996. Mechanism of cellulose polymer reactions with some cation-exchanged montmorillonite catalysts. J. Radioanal. Nucl. Chem. 213, 87-98 https://doi.org/10.1007/BF02165241
  19. Son, H.J., O.M. Lee, Y.G. Kim, and S.J. Lee. 2000. Isolation and identification of cellulose-producing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 28, 134-138
  20. Son, H.J., O.M. Lee, Y.G. Kim, Y.K. Park, and S.J. Lee. 2000. Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Korean J. Biotechnol. Bioeng. 15, 573-577
  21. Sutherland, I.W. 1998. Novel and estabilished applications of microbial polysaccharides. Tibtech. 16, 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  22. Toda, K., T. Asakura, M. Fukaya, E. Entani, and Y. Kawamura. 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum. J. Ferment. Bioeng. 84, 228-231 https://doi.org/10.1016/S0922-338X(97)82059-4
  23. Valla, S. and J. Kjosbakken. 1982. Cellulose negative mutants of Acetobacter xylinum. J. Gen. Microbiol. 128, 1401-1408 https://doi.org/10.1099/00221287-128-7-1401
  24. Williams, W.S. and R.E. Cannon. 1989. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl. Environ. Microbiol. 55, 2448-2452
  25. Yamanaka, S. and K. Watanabe. 1998. Applications of bacterial cellulose in cellulosic polymers, pp. 207-215. In R. Gillbert (ed.), Cellulosic polymers - Blends and composites, Hanser Inc., Cincinnati, OH, USA
  26. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mat. Sci. 24, 3141-3145 https://doi.org/10.1007/BF01139032