DOI QR코드

DOI QR Code

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics

필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성

  • Lee, Sei-Hyun (Dept. of Civil and Environmental Engrg., KAIST) ;
  • Kim, Dong-Soo (Dept. of Civil and Environmental Engrg., KAIST) ;
  • Choo, Yun-Wook (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Choo, Hyek-Kee (Korea Infrastructure Safety and Technology Corporation, Dept. of Civil and Environmental Engrg., Univ. of Incheon)
  • 이세현 (한국과학기술원 건설 및 환경공학과) ;
  • 김동수 (한국과학기술원 건설 및 환경공학과) ;
  • 추연욱 (한국과학기술원 건설 및 환경공학과) ;
  • 권혁기 (한국시설안전공단, 인천대학교 토목환경공학과)
  • Received : 2009.09.28
  • Accepted : 2009.12.11
  • Published : 2009.12.31

Abstract

Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.

정규화 전단탄성계수 감소곡선(G/$G_{max}-\log\gamma$)과 감쇠비 곡선(D-$\log\gamma$)으로 표현되는 비선형 동적 변형특성은 현장 전단파속도 주상도와 함께 필댐의 동적 내진해석시 중요한 입력 물성치로 사용된다. 본 논문에서는 필댐 심벽부와 사력부 각각에 대하여 합리적이고 경제적인 비선형 동적 변형특성 산정 방법을 제시하였다. 심벽부의 경우, 기존 여러 연구 결과로부터 심벽부 구성 재료의 조건을 만족하는 정규화 전단탄성계수 감소곡선 111개, 감쇠비 곡선 98개를 확보하여 3개의 구속응력 영역(0~100kPa, 100kPa~200kPa, 200kPa 초과)에 대한 대표 곡선 및 범위를 제안하였고, 2종의 기존 댐 심벽부 시료에 대한 공진주 시험 결과와 비교하여 신뢰성을 확인하였다. 사력부의 경우, 자갈 등 입자가 큰 사석 재료에 대해 대형 시험장비를 이용하여 시험을 수행한 국외 연구 결과로 부터 정규화 전단탄성계수 감소곡선 135개, 감쇠비 곡선 65개를 획득하였다. 정규화 전단탄성계수 감소곡선은 3개의 구속응력 영역(50kPa 이하, 50kPa~100kPa, 100kPa 초과)에 대해 대표 곡선을 제안하였고, 감쇠비 곡선은 구속응력에 관계없이 하나의 대표 곡선으로 제안하였다. 또한 현재 시공중인 B댐의 사석 재료에 대한 결과와 비교하여 대표 곡선 및 범위에 대한 신뢰성을 검증하였다.

Keywords

References

  1. 건설통부 (2005), "댐 설계기준", 한국수자원학회
  2. 권기철 (2000), "국내 노상토의 회복탄성계수에 대한 구성모델", 대한토목학회논문집, 제30권, 제3-D호, pp.301-310
  3. 김동수, 추연욱 (2001), "공진주시험을 이용한 국내 비점성토 지반의 동적변형특성", 한국지반공학회논문집, 제17권, 제5호, pp. 115-128
  4. 서민우, 신동훈, 하익수, 박한규 (2006), "대형 삼축시험을 통한 석산재와 사력재의 거동 특성 평가", 한국지반공학회 2006 가을 학술발표회, 대구, pp.844-853
  5. 서원석, 이세현, 김동수 (2007), "다짐후의 흡수력 조절 시험을 이용한 노상토의 함수비에 따른 변형특성 평가 : I. 거동", 대한토목학회 논문집, Vol.27, No.1D, pp.89-99
  6. 한국수자원공사 (1999), "댐축조용 조립재료의 대형전단시험 표준화 방안 연구", 한국수자원공사 연구보고서, WRRI-GT-99-3, pp.16-18
  7. 한국시설안전공단 (2004), "기존 댐의 내진성능평가 및 향상요령"
  8. Bardet, J.P. and Tobita, T. (1986), "NERA : A Computer program for nonlinear earthquake site response analysis of layered soil deposits", University of Southern California
  9. Baldi, G., Hueckel, T., Pellegrini, R. (1988), "Thermal volume changes of the mineral-water system in low-porosity clay soils", Canadian Geotechnical Journal, Vol.25, No.4, pp.807-825 https://doi.org/10.1139/t88-089
  10. Burland, J.B. (1989), "Ninth Lauritis Bjerrum Memorial Lecture : Small is Beautiful – The Stiffness of Soils at Small Strains", Canadian Geotechnical Journal, Vol.26, pp.52-65
  11. Dong, J., Nakamura, K., Tatsuoka, F. and Kohata, Y. (1994), "Deformation characteristics of gravels in triaxial compression tests and cyclic triaxial tests", Pre-failure Deformation of Geomaterials, Vol.1, pp.17-23
  12. Flora, A., Jiang, G.L., Kohata, Y. and Tatsuoka, F. (1994), "Small strain behavior of a gravel along some triaxial stress paths", Prefailure Deformation of Geomaterials, Vol.1, pp.279-285
  13. Goto, S., Nishio, S. and Yoshimi, Y. (1994), "Dynamic properties of gravels sampled by ground freezing", Ground Failures under Seismic Conditions, ASCE Geotechnical Special Publication 44, pp.141-157
  14. Goto, S., Suzuki, Y., Nishio, S. and Oh-oka, H. (1992), "Mechanical properties of undisturbed tone-river gravel obtained by in-situ freezing method", Soils and Foundations, Vol.32, No.3, pp.15-25 https://doi.org/10.3208/sandf1972.32.3_15
  15. Hardin, B.O. and Black, W.L. (1968), "Vibration modulus of normally consolidated clay", Journal of the Soil Mechanics and Foundations, ASCE, Vol.94, No.SM2, pp.353-369
  16. Hardin, B.O. and Kalinski, M.E. (2005), "Estimating the shear modulus of gravelly soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, No.7, pp.867-875 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(867)
  17. Hatanaka, M., Suzuki, Y., Kawasaki, T. and Endo, M. (1988), "Cyclic undrained shear properties of high quality undisturbed tokyo gravel", Soils and Foundations, Vol.28, No.4, pp.57-68 https://doi.org/10.3208/sandf1972.28.4_57
  18. Hatanaka, M., and Uchida, A. (1995), "Effects of test methods on the cyclic deformation characteristics of high quality undisturbed gravel samples", Static and dynamic properties of gravelly soils, ASCE Geotechnical Special Publication 56, pp.136-161
  19. Hwang, S.K. (1996), "Dynanic properties of natural soils", Ph.D Dissertation, The University of Texas at Austin
  20. Kim, D.S., Seo, W.S. and Kim, M.J. (2003), "Deformational characteristics of soils with variations of capillary pressure and water content", Soils and Foundations, Vol.43, No.4, pp.71-79 https://doi.org/10.3208/sandf.43.4_71
  21. Kokusho, T. and Tanaka, Y. (1994), "Dynamic properties of gravel layers investigated by in-situ freezing sampling", Ground Failures under Seismic Conditions, ASCE Geotechnical Special Publication 44, pp.121-140
  22. Konno, T., Hatanaka, M., Ishihara, K., Ibe, Y. and Iizuka, S. (1994), "Gravelly soil properties evaluation by large scale in-situ cyclic shear tests", Ground Failures under Seismic Conditions, ASCE Geotechnical Special Publication 44, pp.177-200
  23. Ladd, R.S. (1978), "Preparing test specimens using undercompaction", Geotechnical Testing Journal, Vol.1, No.1, pp.16-23 https://doi.org/10.1520/GTJ10364J
  24. Lin, S., Lin, P.S., Luo, H. and Juang, C.H. (2000), "Shear modulus and damping ratio characteristics of gravelly deposits", Canadian Geotechnical Journal, Vol.37, No.3, pp.638-651 https://doi.org/10.1139/cgj-37-3-638
  25. Modoni, G., Flora, A., Mancuso, C., AnhDan, L.Q., Koseki, J., Balakrishnaiyer, K. and Tatsuoka, F. (1999), "A simple experimental procedure for the complete characterization of small strain stiffness of gravels", Proceeding of 2nd International Symposium on Deformation Characteristics of Geomaterials, Pre-failure Deformation Characterisitics of Geomaterials, Torino, Italy, Vol.1, pp.123-130
  26. Pallara, O., Froio, F., Rinolfi, A. and Presti, D.L. (2006), "Assessment of strength and deformation of coarse grained soils by means of penetration tests and laboratory tests on undisturbed samples", Soil Stress-Strain Behavior : Measurement, Modeling and Analysis, pp.201-213 https://doi.org/10.1007/978-1-4020-6146-2_5
  27. Rollins, K.M., Evans, M.D., Diehl, N.B. and Daily, W.D. (1998), "Shear modulus and damping relationships for gravels", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.5, pp.396-405 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(396)
  28. Seed, H.B., Robert, T.W., Idriss, I.H., and Tokimatsu, K. (1986), "Moduli and damping factors for dynamic analysis of cohesionless soils", Journal of Geotechnical Engineering, ASCE, Vol.112, No.11, pp.1016-1032 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  29. Schnabel, P.B., Lysmer, J. and Seed, H.B. (1972), "SHAKE : A Computer program for earthquake response analysis of horizontally layered sites", Report EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley, California
  30. Stokoe, K.H., Darendeli, M.B., Menq, F.Y. and Choi., W.K. (2004), "Comparison of the linear and nonlinear dynamic properties of gravels, sands, silts and clays", Proceeding of 11th SDEE and 3rd ICEGE, pp.1-4
  31. Tanaka, Y., Kudo, K., Nishi, K. and Okamoto, T. (1994), "Shear modulus and damping ratio of gravelly soils measured by several methods", Pre-failure Deformation of Geomaterials, Vol.1, pp.47-53
  32. Tatsuoka, F. and Shibuya, S. (1991), "Deformation characteristics of soils and rocks from field and laboratory tests", Key Note Lecture for Session No. 1, The 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangkok, pp. 101-170
  33. Vucetic, M. and Dobry R. (1991), "Effect of soil plasticity on cyclic response", Journal of Geotechnical Engineering, ASCE, Vol.117, No.1, pp.89-107 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  34. Yasuda, N. and Matsumoto, N. (1993), "Dynamic deformation characteristics of sands and rockfill materials", Canadian Geotechnical Journal, Vol.30, pp.747-757 https://doi.org/10.1139/t93-067
  35. Yasuda, N. and Matsumoto, N. (1994), "Comparisons of deformation characteristics of rockfill materials using monotonic and cyclic loading laboratory tests and in situ tests", Canadian Geotechnical Journal, Vol.31, No.2, pp.162-174 https://doi.org/10.1139/t94-022
  36. Yasuda, N., Ohta, N. and Nakamura, A. (1996), "Dynamic deformation characteristics of undisturbed riverbed gravels", Canadian Geotechnical Journal, Vol.33, No.2, pp.237-249 https://doi.org/10.1139/t96-003
  37. Yoshida, N. and Towhata, I. (1997), "YUSAYUSA, Theory and Practice"