DOI QR코드

DOI QR Code

Statistical Characteristics of Recent Lightning Occurred over South Korea

최근 남한지역에서 발생한 낙뢰의 통계적 특성

  • Eom, Hyo-Sik (Department of Atmospheric Science, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
  • Published : 2009.04.28

Abstract

Lightning data, observed from total lightning detection system (TLDS) of KMA, for the recent five years (2002-2006) have been analyzed for temporal and spatial characteristics of frequency, intensity, duration, and flash rate. Lightning frequency varies largely with years (most frequent in 2006) and the lightning during the summer accounts for 75% of total flashes and only 0.6% of lightnings strike in cold season. In rainy season (JJAS), the ratio of positive flashes to negative ones is as low as 0.15, but it increases up to 0.98 in February. The seasonal variation of lightning duration is strongly linked with lightning occurrences, whereas flashes rates show weak seasonal variability. In a daily scale, lightning, on average, occurs more often at dawn (2 am, 5-7 am) and in the mid-afternoon (15 pm), and the lightning at dawn (around 5 am) is most intense during the day. The western inland areas md the West/South Sea show high lightning density during JJAS, whereas eastern part and the East Sea exhibit a low density of lightning. Considering the low ratio of positive flashes (0.15) for the whole analysis domain during summer period, Chungnam and Jeonbuk areas have a high ratio of flashes over 0.4. However, these should be analyzed with much caution because weak positive cloud-to-cloud discharges can be regarded as cloud-to-ground flashes. The western inland also exhibits long annual flash hours (15-24). And the W3st Sea has high flash rates as a result of large density and low flash hours. The most frequent time of lightning occurrence over most inland areas lies between mid-afternoon and early-evening, whereas mountainous and coastal areas, and the northern Kyoungki and Hwanghae provinces show the maximum lightning strikes in the morning and at dawn, respectively.

최근(2002-2006) 발생한 낙뢰의 빈도, 강도, 지속시간 및 낙뢰율의 시 공간적 특성을 분석하였다. 빈도는 경년변동이 크게 나타났으며, 여름과 겨울에 각각 전체 낙뢰의 75%, 0.6%가 발생하였다. 정극성 낙뢰는 우기(6-9월)에 부극성 낙뢰의 0.15 비율로 발생했으나 동계에는 그 비율이 증가하여 2월경에 부극성 낙뢰의 0.98까지 증가하였다. 낙뢰 지속시간은 여름에 집중되는 계절변동이 크게 나타났으나 낙뢰율의 변동은 이에 비해 작았다. 낙뢰는 새벽(2시, 5-7시)과 오후 중반(15시)에 두 번의 최대 빈도가 나타났으며 5시경에는 낙뢰강도가 강하였으나, 15시를 전후로 하는 오후 중반에는 낙뢰 강도가 약했다. 낙뢰밀도는 남한 서부 내륙 및 서 남해상에 높으며, 영동 및 동해지역은 낮았다. 충남 및 전북지역에서 0.4 이상으로 높게 나타났는데, 구름내 방전일 가능성이 있어 해석의 주의를 요한다. 낙뢰 밀도가 높은 서부내륙에서는 우기 낙뢰 지속시간이 연 평균 15-25시간으로 나타났으나, 서해상에서는 낙뢰 발생 시의 집중도가 높고 강도가 강하였다. 대부분의 내륙에서는 오후 중반에서 저녁 사이에 낙뢰 발생 빈도가 최대였으나 산악 및 해안, 중서부 지역은 각각 오전과 새벽에 최대로 발생하였다.

Keywords

References

  1. 나득균, 곽종흠, 서명석, 홍윤, 2005, 종관적 특징에 따른 남한 강수 특성 분석: 30년(1973-2002) 기후통계. 한국지구과학회지, 26, 732-743
  2. 우정욱, 심응보, 2003, 낙뢰측정에 대한 기술동향과 LPATS 데이터에 의한 한반도 낙뢰현황. 조명. 전기설비학회지, 17, 16-23
  3. 이동규, 박정균, 1999, 군집분석을 이용한 남한의 여름철 강수지역 구분. 한국기상학회지, 35, 511-518
  4. 이종호, 류찬수, 2001, 한반도의 낙뢰 특성 분석. 대기지, 11, 255-258
  5. 이종호, 河崎善一郎, 류찬수, 2003, 일본 중서부지방에서 발생하는 동계 뇌 방전의 특징. 한국지구과학회지, 24, 181-189
  6. 정은실, 이종호, 김병선, 권두순, 2002, 기상청 신 낙뢰관측시스템의 특성 및 자료 활용방안. 대기지, 12, 580-583
  7. 허창회, 강인식, 1988, 한국지역 강수의 변동성에 관한 연구. 한국기상학회지, 24, 38-48
  8. 홍기옥, 서명석, 나득균, 2006, 최근 30년간(1976-2005) 우리나라 강수의 시. 공간 변동과 지리환경. 한국지구과학회지, 27, 433-449
  9. Boccippio, D.J., Cummins, K., Christian, H.J., and Goodman, S.J., 2001, Combined satellite and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Monthly Weather Review, 129, 108-122 https://doi.org/10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2
  10. Correoso, J.F., Hernandez, E., Garcia-Herrera, R., Barriopedro, D., and Paredes, D., 2006, A 3-year study of cloud-to-ground lightning flash characteristics of mesoscale convective systems over the Western Mediterranean Sea. Atmospheric Research, 79, 89-107 https://doi.org/10.1016/j.atmosres.2005.05.002
  11. Cummins, K.L., Murphy, M.J., Bardo, E.A., Hiscox, W.L., Pyle, R.B., and Pifer, A.E., 1998, A combined TOA/MDF thchnology upgrade of the U.S. national lightning detection network. Journal of Geophysical Research, 103, 9035-9044 https://doi.org/10.1029/98JD00153
  12. De Pablo, F., Soriano, L.R., 2002, Relationship between cloud-to-ground lightning flashes over the Iberian Peninsula and sea surface temperature. Journal of the Royal Meteorological Society, 128, 173-183 https://doi.org/10.1256/00359000260498842
  13. Hodanish, S., Sharp, D., Collins, W., Paxton, C., and Orville, R.E., 1997, A 10-yr monthly lightning climatology of Florida, 1986-95. Weather and Forecasting, 12, 439-448 https://doi.org/10.1175/1520-0434(1997)012<0439:AYMLCO>2.0.CO;2
  14. Huffines, G.R. and Orville, R.E., 1999, Lightning ground flash density and thunderstorm duration in the continental United States: 1989-96. Journal of Applied Meteorology, 38, 1013-1019 https://doi.org/10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2
  15. Katsanos, D., Lagouvardos, K., Kotroni, V., and Argiriou, A., 2007, Combined analysis of rainfall and lightning data produced by mesoscale systems in the central and eastern Mediterranean. Atmospheric Research, 83, 55-63 https://doi.org/10.1016/j.atmosres.2006.01.012
  16. Lim, E. and Lee, T.-Y., 2005, Statistical characteristics of lightning over the Korean Peninsula for 1996-2000. Journal of the Korean Meteorological Society, 41, 41-55
  17. Livingston, E.S., Nielson-Gammon, J.W., and Orville, R.E., 1996, A climatology, synoptic assessment, and thermodynamic evaluation for cloud-to-ground lightning in Georgia: A study for the 1996 Sununer Olympics. Bulletin of the American Meteorological Society, 77, 1483-1495 https://doi.org/10.1175/1520-0477(1996)077<1483:ACSAAT>2.0.CO;2
  18. Orville, R.E., 1991, Lightning ground flash density in the contiguous United States-1989. Monthly Weather Review, 119, 573-577 https://doi.org/10.1175/1520-0493(1991)119<0573:LGFDIT>2.0.CO;2
  19. Orville, RE., 1994, Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989-1991. Journal of Geophysical Research, 99, 10833-10841 https://doi.org/10.1029/93JD02914
  20. Orville, R.E. and Silver, A.C., 1997, Lightning ground flash density in the contiguous United States: 1992-95. Monthly Weather Review, 125, 631-638 https://doi.org/10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2
  21. Orville, R.E., Huffines, G.R., Burrows, W.R., Holle, R.L., and Cummins, K.L., 2002, The North American lightning detection network (NALDN)-First results: 1998-2000. Monthly Weather Review, 130, 2098-2109 https://doi.org/10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2
  22. Pineda, N., Rigo, R., Bech, J., and Soler, X., 2007, Lightning and precipitation relationship in summer thunderstorms: Case studies in the North Western Mediterranean region. Atmospheric Research, 85, 159-170 https://doi.org/10.1016/j.atmosres.2006.12.004
  23. Reap, R.M. and Orville, R.E., 1990, The relationships between network lightning locations and surface hourly observations of thunderstorms. Monthly Weather Review, 118, 94-118 https://doi.org/10.1175/1520-0493(1990)118<0094:TRBNLS>2.0.CO;2
  24. Sheridan, S.C., Griffiths, J.F., and Orville, R.E., 1997, Warm season cloud-to-ground lightning-precipitation relationships in the South-central United States. Weather and Forecasting, 12, 449-458 https://doi.org/10.1175/1520-0434(1997)012<0449:WSCTGL>2.0.CO;2
  25. Soriano, L.R. and Pablo, F.D., 2002, Study of lightning event duration and flash rate in the Iberian peninsula using cloud-to-ground lightning data. Atmospheric Research, 61, 189-201 https://doi.org/10.1016/S0169-8095(01)00138-7
  26. Wacker, R.S. and Orville, R.E., 1999a, Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: Part I. Observations. Journal of Geophysical Research, 104, 2151-2157 https://doi.org/10.1029/1998JD200060
  27. Wacker, R.S. and Orville, R.E., 1999b, Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: Part II. Theory. Journal of Geophysical Research, 104, 2159-2162 https://doi.org/10.1029/1998JD200059
  28. Zajac, B.A. and Rutledge, S.A., 2001, Cloud-to-ground lightning activity in the contiguous United Sates from 1995 to 1999. Monthly Weather Review, 129, 999-1019 https://doi.org/10.1175/1520-0493(2001)129<0999:CTGLAI>2.0.CO;2
  29. 경향신문, 2008, 여수산단 정전으로 인한 직접 피해액만 120억. http://news.khan.co.kr/kh_news/khan_art_view.html?artid=200805201637081&code=950312 (검색일: 2009. 2. 13.)
  30. 기상청, 2008, 보도자료. http://web.kma.go.kr/open/info/notify/notify.jsp?page=1&num=1187807&mode=view&field=subject&text=%B3%AB%B7%DA&order=&dir=&bid=notify&ses= (검색일: 2009. 2. 13.)
  31. 한전 낙뢰 감시 네트워크, 2008, Old-new system 비교. http://www.lightning.or.kr/info/info_sub1.jsp?menu=1 (검색일: 2009. 2. 13. )

Cited by

  1. Seasonal and diurnal variations of stability indices and environmental parameters using NCEP FNL data over East Asia vol.47, pp.2, 2011, https://doi.org/10.1007/s13143-011-0007-x
  2. A 6-yr Cloud-to-Ground Lightning Climatology and Its Relationship to Rainfall over Central and Eastern China vol.54, pp.12, 2015, https://doi.org/10.1175/JAMC-D-15-0029.1