DOI QR코드

DOI QR Code

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members

RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안

  • Choi, Dong-Uk (Dept. of Architectural Engineering, Hankyong National University) ;
  • Chun, Sung-Chul (Daewoo Institute of Construction Technology) ;
  • Ha, Sang-Su (Center for Construction Engineering Research, Hankyong National University)
  • Published : 2009.02.28

Abstract

Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

이형철근의 부식이 우려되는 경우, GFRP 보강근의 사용이 사용될 수 있다. 이 연구에서는 GFRP 보강근으로 보강된 총 36개 보 및 일방향 슬래브의 휨 실험을 수행하였다. 4종의 GFRP 보강근을 실험에 사용하였고, 보강근 직경은 13 mm이었다. 대부분의 실험체의 보강근은 중앙부에서 겹침이음되었다. 모든 보 및 슬래브는 4점재하 되었으므로, 이음부는 균일한 모멘트를 받도록 계획하였다. 실험변수는 이음길이, 피복두께 및 보강근 간격이었다. 보수적으로 부착강도를 평가하기 위하여 이음부에는 스터럽을 사용하지 않았다. 실험결과 보강근과 콘크리트 간 발생한 부착응력을 비선형 단면해석을 통하여 결정하였다. 2변수 선형 회귀분석을 사용하여 평균부착강도의 예측식을 유도하였다. 5% 분위수 개념을 사용하여 이음길이 설계식을 제안하였다. 이 연구의 결과로 이론적인 이음길이 설계식이 제안되었으며 결과를 ACI 440 정착설계식과 비교하였다.

Keywords

References

  1. Japan Society of Civil Engineers (JSCE), “Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials,”Concrete Engineering Series No. 23, 1997.
  2. Architectural Institute of Japan, Design and Construction Guideline of Continuous Fiber Reinforced Concrete, AIJ, 2001.
  3. CAN/CSA S806-02, Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standard Association, Rexdale, Ontario, Canada, 2002: Annex H., Test Method for Bond Strength of FRP Rods by Pullout Testing.
  4. ACI 440 Committee, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-06), American Concrete Institute, Detroit, Michigan, 2006.
  5. 최동욱, 하상수, 이창호 “인발실험에 의한 GFRP 보강근의 정착길이 제안,”콘크리트학회논문집, 19권, 3호, 2007, pp. 323-331. https://doi.org/10.4334/JKCI.2007.19.3.323
  6. 한국건설기술연구원, FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트구조물 건설기술 개발, 한국건설기술연구원, 1차년도 최종 보고서, 2004.
  7. 한국건설기술연구원, FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트구조물 건설기술 개발, 한국건설기술연구원, 2차년도 최종 보고서, 2005.
  8. Wambeke, B. W. and Shield, C. K., “Development Length of Glass Fiber-Reinforced Polymer Bars in Concrete,”ACI Structural Journal, Vol. 103, No. 1, 2006, pp. 11-17.
  9. ACI 408 Committee, Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03), American Concrete Institute, Detroit, Michigan, US, 2003, 49 pp.
  10. Orangun, C. O., Jirsa, J. O., and Breen, J. E., “A Reevaluation of Test Data on Development Length and Splices,” ACI Journal, Vol. 74, No. 11, 1977, pp. 114-122.
  11. Park R. and Pauley, T., Reinforced Concrete Structures, John Wiley and Sons, 1975, 769 pp.
  12. Eshani M. R., Saadatmanesh H., and Tao S., “Design Recommendations for Bond of GFRP Rebars to Concrete,” ASCE J. of Structural Engineering, Vol. 122, No. 3, Mar. 1996, pp. 247-254. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(247)
  13. Darwin, D., Tholen, M. L., Idun, E. K., and Zuo, J., “Splice Strength of High Relative Rib Area Reinforcing Bars,”ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 95-107.
  14. Haldar, A. and Mahadevan, S., Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, Inc., 2000, 304 pp.

Cited by

  1. Artificial neural network for predicting the flexural bond strength of FRP bars in concrete vol.0, pp.0, 2018, https://doi.org/10.1515/secm-2017-0155