The Anticancer Effects and Drug Metabolic Enzyme Change by Oral Intake of Agrimonia Pilosa Ledeb

선학초(짚신나물) 경구투여시 항암효과 탐색 및 약물 대사효소의 변화

  • Rhee, Si-Hyung (Department of Oriental Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Jung, Hee (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Lee, Ju-Ah (Department of Oriental Internal Medicine, College of Oriental Medicine, Semyung University) ;
  • Go, Ho-Yeon (Department of Oriental Internal Medicine, College of Oriental Medicine, Semyung University) ;
  • Choi, Yu-Kyung (Department of Oriental Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Park, Jong-Hyung (Department of Oriental Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Kim, Ji-Hye (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Ko, Seong-Kyu (Department of preventivie Medicine, College of Oriental Medicine, Kyunghee University) ;
  • Jun, Chan-Yong (Department of Oriental Internal Medicine, College of Oriental Medicine, Kyungwon University)
  • 이시형 (경원대학교 한의과대학 내과학교실) ;
  • 정희 (경희대학교 한의과대학 예방의학교실) ;
  • 이주아 (세명대학교 한의과대학 내과학교실) ;
  • 고호연 (세명대학교 한의과대학 내과학교실) ;
  • 최유경 (경원대학교 한의과대학 내과학교실) ;
  • 박종형 (경원대학교 한의과대학 내과학교실) ;
  • 김지혜 (경희대학교 한의과대학 예방의학교실) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실) ;
  • 전찬용 (경원대학교 한의과대학 내과학교실)
  • Received : 2009.07.02
  • Accepted : 2009.08.10
  • Published : 2009.08.30

Abstract

Objective : This research was aimed to investigate the anti-tumor effect, safety, mechanism and metabolizing enzyme of Agrimonia pilosa LEDEB(APL) in female C57B/L mouse. Methods : At first, to evaluate the anti-tumor activity of APL, we divided into four groups, normal, control, APL100(100mg/kg), APL150(150mg/kg). LLC obtained American Type Culture Collection was used. LLC had been inoculated to induce tumor. To measure the anti-tumor effect of APL, we calibrate tumor size and weight. To study for mechanism of anti-tumor in APL, we used western blotting and to know metabolizing enzyme in APL we used to real-time PCR. Results : APL100, APL150 inhibited tumor growth after medicine injected. APL did not only induced caspase-dependent apoptosis in LLC-bearing mouse tumor. In APL100, it were decreased 72% in CYP3A11. In APL150, it were decreased 62%, 75% in CYP3A11 and MRP1a respectively. Conclusion : These results suggests that APL has some anti-tumor effects in female C57B/L mouse tumor. APL should be careful use with other drugs related with CYP3A11 or MRP1a.

Keywords

References

  1. 전기택. 2005년 남녀사망자와 사망원인. 젠더리뷰. 2006 ; 3 : 85-90.
  2. 배종면. 상대생존율. 예방의학회지. 2004 ; 37(3) : 217-9.
  3. 김성경, 박웅섭. 우리나라 암 환자의 개인 부담 의료비용. 대한내과학회지. 2006 ; 70(1) : 61-8.
  4. 정진규, 김종성, 김성수, 강동수, 김성민, 이동훈, 한경희. 말기 암 환자 가족 간병인의 삶의 질. 한국호스피스완화의료학회지. 2006 ; 9(1) : 1-10.
  5. 박신, 권오진. Escherichia coli O157 : H7의 제어를 위한 선학초 추출물과 NaCl의 병용 효과. 한국생물공학회지. 1998 ; 13(2) : 168-73.
  6. 조려화 외 8인. 선학초 부탄올 추출물의 혈관 이완 효과의 기전에 대한 연구. 생약학회지. 2006 ; 37(2) : 67-73.
  7. 전성봉, 양바롬, 최춘환, 김익수, 박경석. 식물병원균에 대한 짚신나물(선학초) 추출물의 항균활성과 Agrimol B의 동정. 농약과학회지. 2006 ; 10(3) : 230-6.
  8. Miyamoto K, Kishi N, Koshiura R. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn J Pharmacol. 1985 ; 38(1) : 9-16. https://doi.org/10.1254/jjp.38.9
  9. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1. Anticancer Res. 1992 Sep-Oct ; 12(5) : 1471-4.
  10. Gao K, Zhou L, Chen J, Li F, Zhang L. Experimental study on decoctum Agrimonia pilosa Ledeb-induced apoptosis in HL-60 cells in vitro. Zhong Yao Cai. 2000 Sep ; 23(9) : 561-2.
  11. 최순자, 백종우, 박종형, 전찬용, 최유경, 고성규. 선학초(짚신나물)에 의한 in vitro와 in vivo에서의 암세포사멸 기전탐색. 대한한방내과학회지. 2009 ; 30(3) : 399-409.
  12. 최정원, 장보형, 이주아, 고호연, 정희, 전찬용 외 4인. 선학초(짚신나물) 복강주사의 항암효과 탐색 및 약물대사효소의 변화. 대한한의학회지. 2009 ; 30(4) : 127-41.
  13. 강세찬 외 12인. 선학초 추출물의 간보호 효과. 생약학회지. 2006 ; 37(1) : 28-32.
  14. 신민교. 임상본초학. 서울:영림사; 1997, p.384-6.
  15. 민경진, 송진욱, 차춘근. 선학초 추출물의 항산화 및 항암활성. 한국식품위생안전성학회지. 2008 ; 23(2) : 149-56.
  16. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification : comparison across anticancer drugs. Clin Cancer Res. 2006 ; 12(18) : 5481-90. https://doi.org/10.1158/1078-0432.CCR-06-0815
  17. Ishikawa M, Okada Y, Satake-Ishikawa R, Kakitani M, Kawagishi M, Matsuki S, Kusaka M, Asano K. Pharmacological effects of recombinant human granulocyte colony-stimulating factor modified by polyethylene glycol on anticancer druginduced neutropenia in mice. Gen Pharmacol. 1994 May ; 25(3) : 533-7. https://doi.org/10.1016/0306-3623(94)90211-9
  18. Sakurai M, Ito M, Hanawa Y, Tsukimoto I, Imashuku S, Ueda K, Nishihira H, Fujimoto T, Ohashi Y. Clinical study of recombinant human granulocyte-colony stimulating factor(KW-2228) in pediatric field. 2. Effectiveness on neutropenia associated with administration of anticancer agent and safety. Rinsho Ketsueki. 1993 ; 34(2) : 119-27.
  19. Steller H. Mechanism and genes of cells suicide. Science. 1995 ; 267 : 1145-9.
  20. Green, D. R. Apoptotic pathways : paper wraps stone blunts scissors. Cell. 2000 ; 102 : 1-4. https://doi.org/10.1016/S0092-8674(00)00003-9
  21. Meier, P., Finch, A. and Evan, G. Apoptosis in develop A. . Nature. 2000 ; 407 : 796-801 https://doi.org/10.1038/35037734
  22. Nunez, G., Benedict, M. A., Hu, Y., Inohara, N. Caspases : The proteases of the apoptotic pathway. Oncogene. 1998 ; 17 : 3237-45. https://doi.org/10.1038/sj.onc.1202581
  23. Kothakota, S., Azuma, T., Reinhard, C., et al. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science. 1997 ; 278 : 294-8. https://doi.org/10.1126/science.278.5336.294
  24. Jonstone, R. W. Apoptosis : a link between cancer genetics and chemotherapy. Cell. 2002 ; 108 : 153-64. https://doi.org/10.1016/S0092-8674(02)00625-6
  25. 임순성, 이연실, 조한진, 신현경, 윤정한. 메톡시화 플라본 유도체 합성과 유도체들이 HT-29 인간 대장암 세포 성장에 미치는 영향. Cancer Prevention Research. 2006 ; 11 : 211-7.
  26. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4(MRP4/ ABCC4) : a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008 ; 29(4) : 200-7. https://doi.org/10.1016/j.tips.2008.01.006
  27. Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1(ABCC1). FEBS Lett. 2006 ; 580(4) : 1103-11. https://doi.org/10.1016/j.febslet.2005.12.036
  28. Van der Kolk DM, Vellenga E, Müller M, de Vries EG. Multidrug resistance protein MRP1, glutathione, and related enzymes. Their importance in acute myeloid leukemia. Adv Exp Med Biol. 1999 ; 457 : 187-98.
  29. Keppler D, Leier I, Jedlitschky G, König J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem Biol Interact. 1998 ; 111-112 : 153-61. https://doi.org/10.1016/S0009-2797(97)00158-0
  30. Huttunen KM, Mähönen N, Raunio H, Rautio J. Cytochrome P450-activated prodrugs : targeted drug delivery. Curr Med Chem. 2008 ; 15(23) : 2346-65. https://doi.org/10.2174/092986708785909120
  31. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human cytochrome P450-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006 ; 2(6) : 875-94. https://doi.org/10.1517/17425255.2.6.875