DOI QR코드

DOI QR Code

Effect of Dietary Grape Pomace on Lipid Oxidation and Related Enzyme Activities in Rats Fed High Fat Diet

포도박이 고지방식이를 섭취한 흰쥐의 지질 산화와 항산화 효소 활성에 미치는 영향

  • 장선화 (영남대학교 식품영양학과) ;
  • 최수경 (영남대학교 식품영양학과) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Published : 2009.07.31

Abstract

The present study was conducted to investigate the effect of dietary supplementation of grape pomace on lipid peroxidation and related enzyme activities of rats fed high fat diet. Male Sprague-Dawley rats weighing about 90 g were assigned to 4 experimental groups of 8 rats on the basis of their body weight. The high fat diet contained additional 15% lard to AIN 93-based diet. Rats were fed experimental diets containing 5% grape pomace for 4 weeks. Dietary supplementation of grape pomace reduced serum concentration of lipid peroxide in rats fed high fat diet. Hepatic concentration of lipid peroxide tended to be lower by feeding grape pomace. Hepatic total glutathione content and GSH/GSSG ratio were increased by grape pomace feeding in normal or high fat diet groups. Hepatic superoxide dismutase activity of grape pomace group with high fat diet was induced significantly compared with high fat diet group without grape pomace. Hepatic catalase activity of high fat fed rats was induced by feeding grape pomace. Grape pomace diet increased glutathione-S-transferase and glutathione peroxidase activities in rat liver fed high fat. Hepatic glucose-6-phosphatase activity was not affected by dietary supplementation of grape pomace in rats fed high fat. These results suggest that dietary supplementation of grape pomace may alleviate lipid peroxidation through antioxidant effect in rats fed high fat.

본 연구에서는 포도박이 고지방식이를 섭취한 흰쥐의 효소 활성과 지질과산화 수준에 미치는 영향을 조사함으로써 포도박의 생리활성과 자원화에 필요한 기초자료를 얻고자하였다. 고지방식이를 섭취한 흰쥐에게 포도박 실험식이를 급여한 후 혈청, 간조직 중의 지질과산화물 함량, glutathione 함량과 간조직 효소 활성을 측정하였다. 포도박 첨가군의 식이섭취량은 대조군에 비하여 감소하였고, 체중증가량의 실험군 간 유의적인 차이는 없었다. 식이효율은 고지방식이군이 정상식이군 보다 유의적으로 증가하였다. 지질과산화물 함량은 혈청의 경우 정상식이군에서는 포도박 첨가에 의한 변화가 없었으나 고지방식이군에서 함량이 증가되었고 포도박 첨가에 의해 감소되었다. 간조직과 간 microsome에서는 포도박을 첨가한 군이 각각의 대조군에 비하여 유의적으로 감소하였다. 간조직 내의 총glutathione 함량과 GSH/GSSG 비는 포도박 첨가군이 대조군에 비하여 모두 유의적으로 증가하였다. 간조직의 SOD 활성은 정상식이군에서는 차이가 없었으나 고지방식이에 포도박을 첨가한 군이 고지방대조군에 비하여 활성이 유도되었다. 간조직의 catalase 활성은 대조군에 비하여 포도박 첨가군이 유의적으로 증가하였다. G6Pase 활성은 포도박의 첨가로 인하여 대조군보다 활성이 증가하였지만 실험군간 유의적인 차이는 없었다. GST와 GSH-Px 활성은 정상 식이군에서는 변화되지 않았으나 고지방식이에 포도박을 첨가한 군이 고지방대조군 보다 효소 활성이 유의적으로 증가되었다. 이상의 결과를 종합해 보면 식이섬유와 폴리페놀 성분을 다량 함유한 포도박 식이는 체내 항산화계를 활성화함으로써 지질 산화와 관련성이 높은 심혈관계 질환의 예방효과를 가져올 수 있는 것으로 기대되었다. 포도박의 이러한 생리활성에 대한 연구결과는 향후 포도 가공 중에 얻어지는 포도박 폐기물을 자원화 할 수 있는 기초자료로 이용될 것으로 사료된다.

Keywords

References

  1. 2006 Annual report on the cause of death statistics. Korea National statistical Office; 2007
  2. Agricultural Products Consumption Actual Condition. Korea Agro-Fisheries Trande Corp; 2006
  3. Soleas GJ, Diamandis EP, Goldberg DM. Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal 1997; 11(5): 287-313 https://doi.org/10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4
  4. Waddington E, Puddey IB, Croft KD. Red wine polyphenolic compounds inhibit atherosclerosis in apolipoprotein E-deficient mice indepently of effect on lipid peroxidation. Am J Clin Nutr 2004; 79: 54-61 https://doi.org/10.1093/ajcn/79.1.54
  5. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339(8808):1523-1526 https://doi.org/10.1016/0140-6736(92)91277-F
  6. Ana MGP, Sara ER, Celestino SB, Sonia DPT, Julian CRG. Flavanol content and antioxidant actinity in winery byproducts. J Agric Food Chem 2004; 52(2): 234-238 https://doi.org/10.1021/jf0348727
  7. Amico V, Napoli EM, Renda A, Ruberto G, Spatafora C, Tringali C. Constituents of grape pomace from the sicilian cultivar Nerello Mascales. Food Chem 2004; 88: 599-607 https://doi.org/10.1016/j.foodchem.2004.02.022
  8. Careri M, Coeeadini C, Elviri L, Nicoletti I, Zagnon I. Lipuid chromatography-electrospray tandem mass spectrometry of cisresveratrol and trans-resveratrol: Development, validation, and application of the method to red wine, grape, and wine making byproducts. J Agric Food Chem 2004; 52: 6868-6874 https://doi.org/10.1021/jf049219d
  9. Baumgartel T, Kluth H, Epperlein K, Rodehutscord M. A note on digestibility and energy value for sheep of different grape pomace. Small Ruminant Res 2007; 67: 302-306 https://doi.org/10.1016/j.smallrumres.2005.11.002
  10. Kammerer D, Claus A, Carle R, Schieber A. Polyphenol screening of pomace from red and white grape varieties by HPLCDAD-MS/MS. J Agric Food Chem 2004; 52(14): 4360-4367 https://doi.org/10.1021/jf049613b
  11. Jeon SH. Factors affecting resveratrol content in ‘Campbell Early’ Grape [Ph.D. dissertation], Jechon: Chungbuk National University; 2003
  12. Harper CE, Patel BB, Wang Jun, Arabshahi A, Eltoum IA, Lamartiniere CA. Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis 2007; 28(9): 1946-1953 https://doi.org/10.1093/carcin/bgm144
  13. Yilmaz Y, Toledo RT. Health aspects of functional grape seed constituents. Trends Food Sci Technol 2004; 15: 422-433 https://doi.org/10.1016/j.tifs.2004.04.006
  14. Olas B, Wachowicz B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets 2005; 16(5): 251-260 https://doi.org/10.1080/09537100400020591
  15. Marhinez J, Moreno JJ. Effect of resvertrol a natural polyphenoic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmaco 2000; 59(7): 865-870 https://doi.org/10.1016/S0006-2952(99)00380-9
  16. Leonard S, Chang X, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responese. Biochem Biophys Re Commun 2003; 309: 1017-1026 https://doi.org/10.1016/j.bbrc.2003.08.105
  17. Vitseva O, Varghese S, Chakrabarti S, Folts JD, Freedman JE. Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol 2005; 46(4): 445-451 https://doi.org/10.1097/01.fjc.0000176727.67066.1c
  18. Rho Kyoung-A. Effect of grape intake on antioxidative and antithrombogenic capacity of Cd-administered rats during aging [Ph.D. dissertation], Seoul: Ewha Womans University; 2002
  19. Yoo MA, Chung HK, Kang MH. Optimal extract methods of antioxidant compounds from coat of grape dreg. Korean J Food Sci Technol 2004; 36(1): 134-140
  20. Philip GR, Forrest NH, George CF. AIN-93 purified diets for laboratory rodents: Final report of the american institute of nutrition AdHoc Writing committee on the reformulation of the AIN76 A rodent diet. J Nutr 1993; 123(11): 1939-1951
  21. Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 1976; 15(2): 212-216 https://doi.org/10.1016/0006-2944(76)90049-1
  22. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  23. Akerboom TPM, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Method in Enzymology 1981; 77: 373-382 https://doi.org/10.1016/S0076-6879(81)77050-2
  24. Aebi H. Catalase. Methods of Enzymatic Analysis 1974; 2: 673-389
  25. Paglia DE, Valentine WN. Studies on quantitative an qualitative charaterization of erythrocyte glutathione peroxidase. Lab Clin Med 1967; 70(1): 158-166
  26. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47(3): 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  27. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249(22): 7130-7139
  28. Baginski ES, Foa PP, Zak B. Glucose-6-phosphatase. In: Methods of Enzymematic Analysis 2. New York: Academic Press; 1983. p.876-880
  29. Lowry OH, Resebrough NJ, Farr AL, Randall TJ. Protein measurement with folin reagent. J Bio Chem 1951; 193(1): 265-272
  30. Um MY, Kim MK. Effect of grape intakes on lipid metabolism of rats during aging. Korean J Nutr 2002; 35(7): 713-728
  31. Fuhrman B, Volkova N, Coleman R, Aviram M. Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (${E^{\circ}}$) mice and reduce macrophage atherogenicity. J Nutr 2005; 135: 722-728 https://doi.org/10.1093/jn/135.4.722
  32. Skottova N, Vecera R, Urbanek K, Vana P, Walterova D, Cvak L. Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharma Res 2003; 47(1): 17-36 https://doi.org/10.1016/S1043-6618(02)00252-9
  33. Alia M, Horcajo C, Bravo L, Goya L. Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr Res 2003; 23: 1251-1267 https://doi.org/10.1016/S0271-5317(03)00131-3
  34. Demrow HS, Slane PR, Folts JD. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 1995; 91(4): 1182-1188 https://doi.org/10.1161/01.CIR.91.4.1182
  35. Schieber A, Stintzing FC, Carle R. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci Technol 2001; 12: 401-413 https://doi.org/10.1016/S0924-2244(02)00012-2
  36. Bobek P. Dietary tomato and grape pomace in rat: effect on lipid in serum and liver, and on antioxidant status. Brit J Biomed Sci 1999; 56(2): 109-113
  37. Johan JP, Joenje H. Biological significance of oxygen toxicity: An introduction. In: Vigo-Pelfrey C, editor. Membrane lipid oxidation Volume III. Florida: CRC Press; 1993. p.7-8
  38. Llobera A, Canellas J. Dietary fibre content and antioxidant activity of manto negro red grape (Vitis vinifera): pomace and stem. Food Chem 2007; 101: 659-666 https://doi.org/10.1016/j.foodchem.2006.02.025
  39. Reiter RJ, Tan DX, Gitto E, Sainz RM, Mayo JC, Leon J, Manchester LC, Vijaylaxmi, Kilic E, Kilic U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol J Pharmacol 2004; 56: 159-170

Cited by

  1. Effects of Water Extracts of Red Pepper Seeds Powder on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.44, pp.4, 2011, https://doi.org/10.4163/kjn.2011.44.4.284
  2. Effects of Dietary Fiber and Stevioside Mixture on Quality Attributes of Sausage and the Blood Properties of Rats vol.32, pp.2, 2012, https://doi.org/10.5851/kosfa.2012.32.2.142
  3. Effect of Red Garlic-Composites on the Fecal Lipid Level and Hepatic Antioxidant Enzyme Activity in Rats Fed a High Fat-Cholesterol Diet vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.017
  4. Antioxidant Activities of Hot Water Extract from Cornus walteri Wanger against Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1525
  5. The Effects of Extraction Conditions on the Antioxidative Effects of Extracts from Campbell Early and Muscat Bailey A Grapevine Leaves vol.42, pp.2, 2013, https://doi.org/10.3746/jkfn.2013.42.2.168
  6. Quality Characteristics of Grape Pomace with Different Drying Methods vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1353
  7. in streptozotocin-induced diabetes model vol.47, pp.6, 2014, https://doi.org/10.4163/jnh.2014.47.6.394