DOI QR코드

DOI QR Code

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2009.07.31

Abstract

An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

Keywords

References

  1. Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63 https://doi.org/10.1007/BF00498003
  2. An, H. J., R. K. Scopes, M. Rodriguez, K. F. Keshav, and L. O. Ingram. 1991. Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173: 5975-5982 https://doi.org/10.1128/jb.173.19.5975-5982.1991
  3. Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol. Rev. 54: 131-142 https://doi.org/10.1111/j.1574-6968.1988.tb02739.x
  4. Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotehnol. Bioeng. Symp. 14: 311-319
  5. Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381 https://doi.org/10.1007/BF00408383
  6. Distefano, T. D., J. M. Gossett, and S. H. Zinder. 1992. Hydrogen as an electron donor for dechlorination of tetachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622-3629
  7. Gibbs, J. and R. D. DeMoss. 1954. Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri. J. Biol. Chem. 207: 689-694
  8. Hansson, L. and M. H. H$\ddot{a}$ggstrom. 1984. Effects of growth conditions on the activies of superoxide dismutase and NADHoxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351 https://doi.org/10.1007/BF01626563
  9. Higuchi, M., Y. Yamamoto, L. B. Poole, M. Shinmada, Y. Sato, N. Takahashi, and Y. Kamio. 1999. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181: 5940-5947
  10. Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157 https://doi.org/10.1007/BF00505880
  11. Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH. Biotech. Lett. 29: 1277-1280 https://doi.org/10.1007/s10529-007-9385-7
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Lopez de Felipe, F., M. J. C. Starrenburg, and J. Hugenholtz. 1997. The role NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis subsp. lactis MG1363. FEMS Microbiol. Lett. 156: 15-19 https://doi.org/10.1016/S0378-1097(97)00394-7
  14. Lucey, C. A. and S. Condon. 1986. Active role of oxygen and NADH oxidase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J. Bacteriol. 179: 3944-3949
  15. Nishiyama, Y., V. Massey, Y. Anzai, T. Watanabe, T. Miyaji, T. Uchimura, M. Kozaki, H. Suzuki, and Y. Niimura. 1997. Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium. J. Ferment. Bioeng. 84: 22-27 https://doi.org/10.1016/S0922-338X(97)82781-X
  16. Nofsinger, G. W. and R. J. Bothast. 1981. Ethanol production by Zymomonas mobilis and Saccharomyces uvarum on aflatoxincontaminated and ammonia-detoxified corn. Can. J. Microbiol. 27: 162-167 https://doi.org/10.1139/m81-026
  17. Osman, Y. A. and L. O. Ingram. 1987. Zymomonas mobilis mutants with an increased rate of alcohol production. Appl. Environ. Microbiol. 53: 1425-1432
  18. Ostovar, K. and P. G. Keeney. 1973. Isolation and characterization of microorganisms involved in the fermentation of Trinidad's cacao beans. J. Food Sci. 38: 611-617 https://doi.org/10.1111/j.1365-2621.1973.tb02826.x
  19. Pankova, L. M., Y. E. Shvinka, M. E. Beker, and E. E. Slava. 1985. Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiya 54: 141-145
  20. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
  21. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61
  22. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  23. Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-1917
  24. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 https://doi.org/10.1023/A:1005674107841
  25. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  26. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
  27. Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23: 37-84
  28. Ruiz-Argueso, T. and A. Rodriguez-Navarro. 1975. Microbiology of ripening honey. Appl. Microbiol. 30: 893-896
  29. Sahm, H., S. Bringer-Meyer, and G. Sprenger. 1992. The genus Zymomonas, pp. 2287-2301. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, Second Edition. Springer-Verlag, New York
  30. Scope, R. K. 1984. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-Keto-D-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis. Anal. Biochem. 136: 530-534 https://doi.org/10.1016/0003-2697(84)90257-4
  31. Scopes, R. K. and K. Griffiths-Smith. 1986. Fermentation capabilities of Zymomonas mobilis glycolytic enzymes. Biotechnol. Lett. 8: 653-656 https://doi.org/10.1007/BF01025976
  32. Teysset, M., F. de la Torre, and J. R. Garel. 2000. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress. Appl. Environ. Microbiol. 66: 262-267 https://doi.org/10.1128/AEM.66.1.262-267.2000
  33. Wecker, M. S. A. and R. R. Zall. 1987. Production of acetaldehyde by Zymomonas mobilis. Appl. Environ. Microbiol. 53: 2815-2820

Cited by

  1. Improvement of Ethanol Production by Electrochemical Redox Combination of Zymomonas mobilis and Saccharomyces cerevisiae vol.20, pp.1, 2009, https://doi.org/10.4014/jmb.0904.04029
  2. Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment vol.21, pp.6, 2009, https://doi.org/10.4014/jmb.1101.01032
  3. Effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037 vol.78, pp.3, 2009, https://doi.org/10.1080/09168451.2014.882743
  4. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars vol.9, pp.None, 2009, https://doi.org/10.1186/s13068-016-0606-y
  5. Electro-Fermentation in Aid of Bioenergy and Biopolymers vol.11, pp.2, 2009, https://doi.org/10.3390/en11020343
  6. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2 vol.18, pp.None, 2009, https://doi.org/10.1186/s12934-019-1067-3
  7. Potential of Zymomonas mobilis as an electricity producer in ethanol production vol.13, pp.None, 2020, https://doi.org/10.1186/s13068-020-01672-5