Separation of Palladium(II) and Ruthenium(IV) from Hydrochloric Acid Solution by Solvent Extraction

염산용액에서 용매추출에 의한 팔라듐(II)과 루테늄(IV)의 분리

  • Lee, Man-seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Ahn, Jong-Gwan (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 안종관 (한국지질자원연구원 광물자원연구본부)
  • Received : 2009.04.08
  • Published : 2009.06.25

Abstract

In the solvent extraction of Ru(IV) with Alamine336, it was found that Ru took part in the reaction as $RuCl_{6}_^{2-}$ in the HCl concentration range of 1 to 5 M. Interaction parameter between hydrogen ion and $RuCl_{6}_^{2-}$ was estimated by applying Bromley equation to the extraction data. From the mixed solutions of Pd(II) and Ru(IV), the distribution coefficients of Pd were found to be higher than those of Ru in the experimental ranges. Separation factor between Pd and Ru rapidly increased with the decrease of Alamine336 concentration. About 60% of the Ru from the mixed solutions was extracted by TBP at 8.3 M HCl, while Pd was not extracted in the HCl concentration range of 1.6 to 8.3 M.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. T. N. Lokhande, G. B. Kolekar, M. A. Anuse, and M. B. Chavan, Separation Science and Technology 35, 153 (2000) https://doi.org/10.1081/SS-100100149
  2. K. Inoue and T. Maruuchi, Hydrometallurgy 16, 93 (1986) https://doi.org/10.1016/0304-386X(86)90054-X
  3. V. V. Belova, T. I. Jidkova, and S. A. Vasilevich, Solvent extraction and ion exchange 15, 1023 (1997) https://doi.org/10.1080/07366299708934519
  4. T. N. Lokhande, M. A. Anuse, and M. B. Chavan, Talanta 46, 163 (1998) https://doi.org/10.1016/S0039-9140(97)00270-1
  5. M. Rovira, J. L. Cortina, and A. M. Sastre, Solvent extraction and ion exchange 17, 333 (1999) https://doi.org/10.1080/07366299908934616
  6. C. Foulon, D. Pareau, and G. Durand, Hydrometallurgy 51, 139 (1999) https://doi.org/10.1016/S0304-386X(98)00053-X
  7. A. Zhang, Solvent extraction and ion exchange 18, 1189 (2000) https://doi.org/10.1080/07366290008934729
  8. K. Kaikake and Y. Baba, Solvent extraction and ion exchange 20, 491 (2002) https://doi.org/10.1081/SEI-120014369
  9. A. A. Mhaske and P. M. Dhake, Hydrometallurgy 61, 143 (2001) https://doi.org/10.1016/S0304-386X(01)00152-9
  10. M. V. Rane and V. Venugopal, Hydrometallurgy 84, 54 (2006) https://doi.org/10.1016/j.hydromet.2006.04.005
  11. C. Caravaca, F. J. Alguacil, and A. Sastre, Hydrometallurgy 40, 263 (1996) https://doi.org/10.1016/0304-386X(95)00013-7
  12. M. S. Lee and J. Y. Lee, J. Kor. Inst. & Mater. 46, 227 (2008)
  13. J. Rydberg, M. Cox, C. Musikas, and G. R. Choppin, Solvent Extraction Principles and Practice, Marcel Dekker, Inc., p. 481, New York (2004)
  14. M. S. Lee and J. Y. Lee, J. Kor. Inst. of Resources Recycling 18, 30 (2009)
  15. J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics, AIChE DIPPR, p. 64-66, New York (1986)
  16. M. Mojski, Talanta 27, 7 (1980) https://doi.org/10.1016/0039-9140(80)80003-8
  17. K. N. Han, Fundamentals of aqueous metallurgy, SME, Inc., p. 96-97 (2002)