Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion of Electroless-plated Ni on Polyimide

고온다습처리 조건이 무전해 니켈 도금 박막과 폴리이미드 사이의 계면 접착력에 미치는 영향

  • Min, Kyoung-Jin (The Center for Green Materials Technology, School of Material Science and Engineering, Andong National University) ;
  • Jeong, Myeong-Hyeok (The Center for Green Materials Technology, School of Material Science and Engineering, Andong National University) ;
  • Lee, Kyu-Hwan (Department of Surface Technology, Korea Institute of Materials Science) ;
  • Jeong, Yong-Soo (Department of Surface Technology, Korea Institute of Materials Science) ;
  • Park, Young-Bae (The Center for Green Materials Technology, School of Material Science and Engineering, Andong National University)
  • 민경진 (안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 정명혁 (안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 이규환 (한국기계연구원 부설재료연구소 표면기술연구부) ;
  • 정용수 (한국기계연구원 부설재료연구소 표면기술연구부) ;
  • 박영배 (안동대학교 신소재공학부 청정소재기술연구센터)
  • Received : 2009.05.04
  • Published : 2009.10.25

Abstract

Effects of $85^{\circ}C/85%$ Temperature/Humidity (T/H) treatment conditions on the peel strength of an electroless-plated Ni/polyimide system were investigated from a $180^{\circ}$ peel test. Peel strength between electroless-plated Ni and polyimide monotonically decreased from $37.4{\pm}5.6g/mm$ to $22.0{\pm}2.7g/mm$ for variation of T/H treatment time from 0 to 1000 hrs. The interfacial bonding mechanism between Ni and polyimide appears to be closely related to Ni-O bonding at the Ni/polyimide interface. The decrease in peel strength due to T/H treatment appears to be related to polyimide degradation due to moisture penetration through the interface and the bulk polyimide itself.

Keywords

Acknowledgement

Supported by : 재료연구소

References

  1. D. P. Seraphim, R. Lasky, and C. Y. Li, Principles of Electronic Packaging, p.351, McGraw-Hill, New York (1989)
  2. M. H. Kim and K. W. Lee, Met. Mater. Int. 12, 425 (2006) https://doi.org/10.1007/BF03027710
  3. S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam, and Y. H. Kim, Surf. Coat. Tech. 200, 2072 (2005) https://doi.org/10.1016/j.surfcoat.2005.05.021
  4. A. M. Ektessabi and S. Hakamata, Thin Solid Films. 377-378, 621 (2000) https://doi.org/10.1016/S0040-6090(00)01444-9
  5. G. S. Chang, S. M. Jung, Y. S. Lee, I. S. Choi, C. N. Whang, J. J. Woo, and Y. P. Lee, J. Appl. Phys. 81, 135 (1997) https://doi.org/10.1063/1.363999
  6. J. S. Eom and S. H. Kim, Thin Solid Films 516, 4530 (2008) https://doi.org/10.1016/j.tsf.2008.01.022
  7. S. H. Kim, S. H. Cho, N.-E. Lee, H. M. Kim, Y. W. Nam, and Y. -H. Kim, Surf. Coat. Tech. 193, 101 (2005) https://doi.org/10.1016/j.surfcoat.2004.08.130
  8. P.-C. Chiang, W.-T. Whang, S.-C. Wu, and K.-R. Chuang, Polymer. 45, 4465 (2004) https://doi.org/10.1016/j.polymer.2004.04.024
  9. W.-J. Lee, Y.-S. Lee, S.-K. Rha, Y.-J. Lee, K.-Y. Lim, Y.-D. Chung, and C.-N. Whang, Appl. Surf. Sci. 205, 128 (2003) https://doi.org/10.1016/S0169-4332(02)01016-4
  10. J.-Y. Park, Y.-S. Jung, J. Cho, and W.-K. Choi, Appl. Surf. Sci. 252, 5877 (2006) https://doi.org/10.1016/j.apsusc.2005.08.019
  11. W. J. Lee and Y. B. Kim, Thin Solid Films 517, 1191 (2008) https://doi.org/10.1016/j.tsf.2008.06.022
  12. S. Mazur, P. S. Lugg, and C. Yarnitzky, J. Electrochem. Soc. 134, 346 (1987) https://doi.org/10.1149/1.2100458
  13. W.-X. Yu, L. Honh, B.-H. Chen, and T.-M. Ko, J. Mater. Chem. 13, 818 (2003) https://doi.org/10.1039/b208102d
  14. W. Yu and T. M. Ko, Eur. Polym. J. 37, 1791 (2001) https://doi.org/10.1016/S0014-3057(01)00060-X
  15. Z. WANG, F. Akihiko, Y. Keiichirou, I. Hideo, B. Tomoyuki, H. Muneaki, T. Sotaro, S. Shoso, K. Hiroshi, and O. Tadahiro, J. Adhesion Sci. Technol. 16, 1027 (2002) https://doi.org/10.1163/156856102760146147
  16. S. M. Ho, T. H. Wang, H. L. Chen, K. M. Chen, S. M. Lian, and A. Hung, J. Appl. Polym. Sci. 51, 1373 (1994) https://doi.org/10.1002/app.1994.070510803
  17. S. Ikeda, H. Yanagimoto, K. Akamatsu, and H. Nawafune, Adv. Funct. Mater. 17, 889 (2007) https://doi.org/10.1002/adfm.200600527
  18. S. Lee, S. S. Park, and H. K. Lee, Macromol. Symp. 249-250, 586 (2007) https://doi.org/10.1002/masy.200750441
  19. E. C. Ahn, J. Yu, and I. S. Park, J. Mater. Sci. 7, 175 (1996) https://doi.org/10.1007/BF00133111
  20. S. C. Park, S. H. Sho, H. C. Jung, J. W. Joung, and Y. B. Park, Kor. J. Mater. Res. 17, 215 (2007) https://doi.org/10.3740/MRSK.2007.17.4.215
  21. T. Miyamura and J. Koide, Mater. Sci. Eng. A 445-446, 620 (2007) https://doi.org/10.1016/j.msea.2006.09.097
  22. D. D. Denton, M. C. Buncick, C. Buncick, and H. Pranjoto, J. Mater. Res. 6, 2747 (1991) https://doi.org/10.1557/JMR.1991.2747
  23. A. F. Rubira, J. D. Rancourt, M. L. Caplan, A. K. St. Clair, and L. T. Taylor, Chem. Mater. 6, 2351 (1994) https://doi.org/10.1021/cm00048a022
  24. S. C. Park, S. H. Sho, H. C. Jung, J. W. Joung, and Y. B. Park, J. Kor. Inst. Met. & Mater. 45, 520 (2007)