Growth Characteristics on the Water Temperature, Salinity and Irradiance of the harmful Algae Chattonella ovata Y. Hara et Chihara(Raphidophyceae) Isolated from South Sea, Korea

한국 남해에서 분리한 유해 침편모조류 Chattonella ovata Y. Hara et Chihara의 수온, 염분 및 광량에 대한 성장특성

  • Noh, Il-Hyeon (Marine Future Resources Development Agency, Chonnam National University) ;
  • Yoon, Yang-Ho (Marine Future Resources Development Agency, Chonnam National University) ;
  • Kim, Dae-Il (West Regional Headquarters, Korea Coast Guard) ;
  • Oh, Seok-Jin (Kora Inter-University Institute of Ocean Science, Pukyong University) ;
  • Kim, Jong-Deok (Marine Future Resources Development Agency, Chonnam National University)
  • 노일현 (전남대학교 해양미래자원개발사업단) ;
  • 윤양호 (전남대학교 해양미래자원개발사업단) ;
  • 김대일 (서해지방해양경찰청) ;
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 김종덕 (전남대학교 해양미래자원개발사업단)
  • Received : 2010.05.03
  • Accepted : 2010.07.29
  • Published : 2010.08.31

Abstract

We investigated the effects of water temperature, salinity and irradiance on the growth of the harmful algae Chattonella ovata isolated from South Sea, Korea. C. ovata grew under all combinations of water temperatures and salinity, except for all the salinity conditions at the water temperature of $10^{\circ}C$, with the salinity of 7.5 psu and 10 psu at $15^{\circ}C$, and 7.5 psu at $20^{\circ}C$ and $30^{\circ}C$. The maximum specific growth rate was $0.62\;day^{-1}$ at the combination of $30^{\circ}C$ and 30 psu. The results of two-way ANOVA indicated that growth rate depended greatly on the water temperatures while not being affected by interactions with the salinity. This indicates that C. ovata is a stenothermal and euryhaline organism, preferring high water temperatures. C. ovata did not grow at irradiance ${\leq}30\;{\mu}mol$ photons $m^{-2}s^{-1}$. Photoinhibition did not occur at $800\;{\mu}mol$ photons $m^{-2}s^{-1}$, which was the maximum irradiance used in this study. The irradiance-growth curve was described as $\mu$ = 0.74(I-16.0)/(I+43.9) at $30^{\circ}C$ and 30 psu. The half-saturation light intensity ($K_s$) was $75.9\;{\mu}mol$ photons $m^{-2}s^{-1}$ and compensation photon flux density ($I_c$) was $16.0\;{\mu}mol$ photons $m^{-2}s^{-1}$, especially this value was comparatively lower than those of Skeletonema costatum and other flagellates previously reported. Therefore, our results indicate that C. ovata has advantageous physiological characteristics for interspecific competition at the embayment and coastal areas of Korea in summer.

한국 남해에서 분리한 유해조류 Chattonella ovata의 성장에 미치는 수온과 염분 및 광량의 영향을 조사하였다. C. ovata는 $10{\sim}30\;^{\circ}C$의 수온과 7.5~40 psu의 염분조합 중 $10^{\circ}C$의 모든 염분조합과 $15^{\circ}C$의 7.5 psu와 10 psu, 그리고 $20^{\circ}C$$30^{\circ}C$의 7.5 psu를 제외한 모든 조합에서 성장하였다. 최대 성장속도는 $30^{\circ}C$, 30 psu 조합에서 $0.62\;day^{-1}$로 관찰되었다. 이원배치 분산분석(two-way ANOVA) 결과로부터 그들의 성장속도는 수온에 크게 의존할 뿐 염분과 교호작용의 영향은 미약하였다. 이와 같은 결과는 C. ovata가 고수온을 선호하는 광염성종임을 지시하였다. C. ovata는 $30\;{\mu}mol$ photons $m^{-2}s^{-1}$ 이하의 광량에서는 성장이 이루어지지 않았고, 본 연구에서 제공한 최대 광량인 $800\;{\mu}mol$ photons $m^{-2}s^{-1}$서 광 저해현상은 보이지 않았다. 광 조건에 의해 유도된 성장식 $\mu$=0.74(I-16.0)/(I+43.9)으로부터 성장에 대한 반포화광량($K_s$)은 $75.9\;{\mu}mol$ photons $m^{-2}s^{-1}$, 절대광량($I_c$)은 $16.0\;{\mu}mol$ photons $m^{-2}s^{-1}$로 나타났으며, 특히 $K_s$는 규조류인 Skeletonema costatum을 비롯한 다른 여러 편모조류보다 낮았다. 이상의 결과로부터 C. ovata는 하계 한국 내만과 연안해역에서 종간경쟁에 유리한 생리특성을 가진 종으로 판단되었다.

Keywords

Acknowledgement

Supported by : 전남대학교

References

  1. 국립수산과학원, 2005. 2005년도 한국연안의 적조발생 상황. 149 pp.
  2. 국립수산과학원, 2007. 2006년도 한국연안의 적조발생 상황. 97 pp.
  3. 국립수산과학원, 2008. 2007년도 한국연안의 적조발생 상황. 127 pp.
  4. 노일현, 2009. 한국 연안해역에 출현하는 침편모조류 Chattonella속의 생리생태학적 연구. 전남대학교 대학원 박사학위 논문, 269 pp.
  5. 노일현, 오석진, 박종식, 신현호, 윤양호, 2009, 한국 남해산 유해조류 Chattonella marina와 C. ovata (Raphidophyceae)의 영양염에 대한 성장동력학. 한국수산과학회지, 42: 674-682.
  6. 노일현, 오석진, 신현호, 강인석, 윤양호, 2010. 여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성. 한국수산과학회지, 43: 362-372.
  7. 노일현, 윤양호, 김대일, 오석진, 2006. 가막만에서 분리한 유해성 침편모조류 Chattonella marina (Subrahmanyn) Hara et Chihara (Raphidophyceae)의 성장에 영향을 미치는 수온, 염분 및 빛의 영향. 한국수산학회지, 39: 487-494.
  8. 문성기, 최철만, 2003. 국내 해양식물플랑크톤의 주요종과 분포에 대한 조사. 한국환경과학회지, 12: 725-733.
  9. 박종식, 윤양호, 오석진, 2009. 한국 남해 가막만 입구해역의 식물플랑크톤 군집 변동 특성. 환경생물, 27: 205-215.
  10. 여환구, 박미옥, 1997. 진해만 동부 해역내 식물플랑크톤 군집과 수질환경의 계절 변동. 한국환경화학회지, 6: 231-238.
  11. 오석진, 강인석, 윤양호, 양한섭, 2008. 진해만에서 분리한 중심목 규조류 Skeletonema costatum (Grev.) Cleve의 성장에 미치는 광학적 특성. 환경생물 26: 57-65.
  12. 오석진, 윤양호, 2004. 여수해만에서 분리한 유독 와편모조류, Gymnodinium catenatum(Graham)의 성장에 미치는 수온, 염분과 광 조건. Algae, 19: 293-301. https://doi.org/10.4490/ALGAE.2004.19.4.293
  13. Barraza-Guardado, R., R, Cortes-Altamirano and A. Sierra-Beltran, 2004. Marine die-offs from Chattonella marina and Ch. cf. ovata in Kun Kaak Bay, Sonora in the Gulf of California. Harmful Algae News, 25: 7-8.
  14. Cucchiari, E., F. Guerrini, A. Penna, C. Totti and R. Pistocchi, 2008. Effect of salinity, temperature, organic and inorganic nutrients on the growth of cultured Fibrocapsa japonica (Raphidophyceae) from the northern Adriatic Sea. Harmful Algae, 7: 405-414. https://doi.org/10.1016/j.hal.2007.09.002
  15. de Boer, M.K., M.R. Tyl, E.G Vrieling and M. van Rijssel, 2004. Effects of salinity and nutrient conditions on growth and haemolytic activity of Fibrocapsa japonica (Raphidophyceae). Aquat. Microb. Ecol., 37: 171-181. https://doi.org/10.3354/ame037171
  16. Demura, M., M.-H. Noel, F. Kasai, M.M. Watanabe and M. Kawachi, 2009. Taxonomic revision of Chattonella antiqua, C. marina and C. ovata (Raphidophyceae) based on their morphological characteristics and genetic diversity. Phycologia, 48: 518-535. https://doi.org/10.2216/08-98.1
  17. Epply, R.W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. Nat. Ocean. Atmos. Adm., 70: 1063-1085.
  18. Faust M.A., J.C. Sager and B.W. Meeson, 1982. Response of Prorocentrum mariae-lebouriae (Dinophyceae) to light of different spectral qualities and irradiances: growth and pigmentation. J. Phycol., 18: 349-356. https://doi.org/10.1111/j.1529-8817.1982.tb03195.x
  19. Goldman, J.C. and E.J. Carpenter, 1974. A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr., 19: 756-766.
  20. Hara, Y., K. Doi and M. Chihara, 1994. Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan. Japan J. Phycol., 42: 407-420.
  21. Hiroishi, S., H. Okada, I. Imai and T. Yoshida, 2005. High toxicity of the novel bloom forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae, 4: 783-787. https://doi.org/10.1016/j.hal.2004.12.008
  22. Imai, I., M. Yamaguchi and M. Watanabe, 1998. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto Inland Sea, Japan. In: Physiological Ecology of Harmful Algal Blooms, edited by Anderson, D.M., A.D. Cembella and GM, Hallegraeff, Springer-Verlag, Berlin, pp. 95-112.
  23. Imai, I. and K. Itoh, 1987. Annual life cycle of Chattonella spp., causative flagellates of noxious red tides in the Inland Sea of Japan. Mar. Biol., 94: 287-292. https://doi.org/10.1007/BF00392942
  24. Imai, I., K. Itoh and M. Anraku, 1989. Dormancy and maturation in the cysts of Chattonella spp. (Raphidophyceae), red tide flagellates in the Inland Sea of Japan. In: Red tides: Biology, enviromental science, and toxicology, edited by Okaichi, T., D.M. Anderson and T. Nemoto, Elservier, New York, pp. 289-292.
  25. Itoh, K. and I. Imai, 1987. Rapido So (Raphidophyceae). In: A guide for studies of red tide organisms, edited by The Japan Fisheries Resources Conservation Association, Shuwa, Tokyo, pp. 122- 130.
  26. Khan, S., O. Arakawa and Y. Onoue, 1996. Growth characteristics of a neurotoxin producing chloromonad, Fibrocapsa japonica (Raphido-phyceae). J. World Aquacult. Soc., 27: 247-253. https://doi.org/10.1111/j.1749-7345.1996.tb00606.x
  27. Khan, S., O. Arakawa and Y. Onoue, 1998. Physiological investigation of a neurotoxin-producing phytoflagellate, Chattonella marina (Raphido-phyceae). Aquacult. Res., 29: 9-17. https://doi.org/10.1111/j.1365-2109.1998.tb01096.x
  28. Kirk, J.T.O., 1994. Light and photosynthesis in Aquatic Ecosystems, 2nd Ed., Cambridge Univ. Press., Cambridge, U. K., pp. 509.
  29. Law, E.J. and T.T. Bannister, 1980. Nutrient and light limited growth Thalassiosira fluviatilis in continous culture, with implications for phytoplankton growth in the Ocean. Limnol. Oceanogr., 25: 457-473. https://doi.org/10.4319/lo.1980.25.3.0457
  30. Lederman, T.C. and P. Tett, 1981. Problems in modeling the photosynthesis- light relationship for phytoplankton. Bot. Mar., 24: 125-134. https://doi.org/10.1515/botm.1981.24.3.125
  31. Lu, S. and I.J. Hodgkiss, 2001. More raphidophyte blooms in South China waters. Harmful Algae News, 22: 1-2.
  32. Marshall, J.M. and G.M. Hallegraeff, 1999. Comparative ecophysiology of the harmful alga Chattonella marina (Raphidophyceae) from South Australian and Japanese waters. J. Plankton Res., 21: 1809- 1822. https://doi.org/10.1093/plankt/21.10.1809
  33. Matsubara, T., S. Nagasoe, Y. Yamasaki, T. Shikata, Y. Shimasaki, Y. Oshima and T. Honjo, 2007, Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exper. Mar. Biol. Ecol. 342: 226-230. https://doi.org/10.1016/j.jembe.2006.09.013
  34. Nakamura, Y. and M.M. Watanabe, 1983. Growth characteristics of Chattonella antiqua (Raphidophyceae) Part 1. Effects of temperature, salinity, light intensity and pH on growth. J. Oceanogr. Soc. Japan, 39: 110-114. https://doi.org/10.1007/BF02070796
  35. Nielsen, M.V. and C.P. Tonseth, 1991. Temperature and salinity effect on growth and chemical composition of Gyrodinium aureolum Hulburt in culture. J. Plankton Res., 13: 389-398. https://doi.org/10.1093/plankt/13.2.389
  36. Okubo, A., 1982. Horizontal dispersion and critical scales for phytoplankton patches. In: Spatial pattern in Plankton Communities, Ser. IV, 3, Plenum Press, edited by Steele, J.H., New York and London, pp. 21-42.
  37. Sachez-saavedra, M.P. and D. Voltolina, 1994. The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions Comp. Biochem. Physiol., 107B: 39-44.
  38. Smayda, T.J., 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr., 42: 1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  39. Shikata, T., S. Nagasoe, T. Matsubara, S. Yoshikawa, Y. Yamasaki, Y. Shimasaki, Y. Oshima, I.R. Jenkinson and T. Honjo, 2008. Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan. Limnol. Oceanogr., 53: 2503-2518. https://doi.org/10.4319/lo.2008.53.6.2503
  40. Subrahmanyan, R., 1954. On the life-history and ecology of Hornellia marina gen. et sp. nov., (Chloromonadineae), causing green discoloration of the sea and mortality among marine organisms off the Malabar Coast. Indian J. Fish., 1: 182-203.
  41. Vrieling, E.G., R.P.T. Koeman, K. Nagasaki, Y. Ishida, L. Peperzak, W.W.C. Gieskes and M. Veenhuis, 1995. Chattonella and Fibrocapsa (Raphidophyceae): First observation of, potentially harmful, red tide organisms in Dutch coastal waters. Netherlands J. Sea Res., 33: 183-191. https://doi.org/10.1016/0077-7579(95)90005-5
  42. Wallen D.G. and G.H. Geen, 1971. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Mar. Biol., 10: 34-43. https://doi.org/10.1007/BF02026764
  43. Yamaguchi, H., S. Sakamoto and M. Yamaguchi, 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae, 7: 26-32. https://doi.org/10.1016/j.hal.2007.05.011
  44. Yamaguchi, M., H. Yamaguchi, G. Nishitani, S. Sakamoto and S. Itakura, 2008. Morphology and germination characteristics of the cysts of Chattonella ovata (Raphidophyceae), a novel red tide flagellate in the Seto Inland Sea, Japan. Harmful Algae, 7: 459-463. https://doi.org/10.1016/j.hal.2007.10.002
  45. Yamaguchi, M., I. Imai and T. Honjo, 1991. Effect of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Chattonella antiqua and C. marina (Raphidophyceae). Nippon Suisan Gakkaishi, 57: 1227-1284.
  46. Yamaguchi, M., S. Itakura, K. Nagasaki, Y. Matsutama, T. Uchida and I. Imai, 1997. Effects of temperature, salinity and irradiance on the growth of the red tide flagellate Heterocapsa circularisquama (Dinophyceae) and Chattonella verruculosa (Raphidophyceae). J. Plankton Res. 19: 1167-1174. https://doi.org/10.1093/plankt/19.8.1167
  47. Yamaguchi, M. and T. Honjo, 1989. Effect of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Gymnodinium nagasakiense (Dinophyceae). Nippon Suisan Gakkaishi, 55: 2029-2036. https://doi.org/10.2331/suisan.55.2029
  48. Yamamoto, T. and M. Okai, 2000. Effects of diffusion and upwelling on the formation of red tides. J. Plankton Res., 22: 363-380. https://doi.org/10.1093/plankt/22.2.363
  49. Yamamoto, T., Y. Yoshizu and K. Tarutani, 1995. Effect of temperature, salinity and irradiance on the growth of toxic Dinoflagellate Alexandrium tamarense isolated from Mikawa Bay, Japan. Japan J. Phycol. (Sorue), 43: 91-98.
  50. Zhang, Y., F.X. Fu, E. Whereat, K.J. Coyne and D.A. Hutchins, 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae, 5: 310-320. https://doi.org/10.1016/j.hal.2005.09.001