DOI QR코드

DOI QR Code

Theoretical Investigation on Molecular Diffusion and Conceptual Change of Preservice Teachers by Inquiry Experiment

분자확산에 대한 이론적 고찰과 탐구실험을 통한 예비교사의 개념변화

  • Received : 2009.09.01
  • Accepted : 2009.12.01
  • Published : 2010.02.28

Abstract

The scope of this study is: (1) to review or summarize the theoretical explanations of diffusion; (2) to investigate the preservice teachers' understanding of diffusion utilizing the inquiry experiment of diffusion that was developed in this study. The data was collected through questionnaires given to 41 preservice teachers in 3 universities and interviews with 20 subjects from this population, who conducted the inquiry experiment. During the experiment, the data was collected from the students' reports and 3 small groups' audio/video recordings. To understand preservice teachers' conceptions, reports, audio/video recordings, questionnaires and interviews were analyzed and discussed with co-workers. The results follow: (1) The differences between effusion and diffusion as well as equal-pressure experiment and equal-flux one on diffusion were discussed; (2) Most preservice teachers understood effusion and diffusion connected to Graham's law of diffusion by rote and have misconceptions about the diffusion process; (3) They observed two kinds of diffusion experiments (equal-pressure and equal-flux) by inquiry experiment, but the majority of them failed to find conceptual differences between these experiments. After the inquiry experiment, about 40% of the samples modified their conceptions about diffusion.

이 연구에서는 확산을 이론적으로 정리하고, 확산에 관한 탐구실험을 개발하여 예비교사의 확산에 대한 이해를 조사하였다. 이 탐구실험을 수행한 3개 대학의 41명을 대상으로 설문조사를 하였고, 이 중 20명이 면담에 참여했다. 탐구실험을 수행하는 과정에서 3개 모둠에서 6명의 실험과정을 녹음, 녹화하였다. 예비교사의 개념에 대한 이해를 돕기 위해 면담과 녹음자료의 전사본, 보고서와 설문지, 확산에 대한 시험 답안지를 분석하였으며, 공동연구자와 결과에 대해 논의하였다. 연구결과는 다음과 같다. 첫째, 분출과 확산 그리고 확산 중 등압확산과 등유량확산에 대해서 논의하였다. 둘째, 예비교사들은 분출과 확산 등을 Graham의 확산속도법칙에 의해 기계적으로 이해하고 있었으며 대부분의 학생들이 확산에 대한 오개념을 가지고 있는 것으로 조사되었다. 셋째, 탐구실험과정에서 예비교사들은 등압 및 등유량의 두 가지 확산실험에 대해 직접 관찰하였으나, 대부분의 경우 두 실험의 개념적 차이를 구별하는데 실패하였다. 탐구실험 후, 확산에 대한 개념의 수정이 이루어진 예비교사는 약 40%였다.

Keywords

References

  1. 강대훈, 백성혜, 박국태 (2001). 중학생들의 용해현상 이해에 대한 연구. 대한화학회지, 45(1), 83-89.
  2. 교육부 (2001). 고등학교 교육과정 해설. 서울: 대한교과서. pp.142-143.
  3. 구선아, 채희권 (2008). 7학년 교과서의 확산현상기술에 대한 분석과 과학교사들의 확산개념에 대한 이해도 조사. 한국과학교육학회지, 28(5), 383-394.
  4. 김문수, 정영란 (1997). 확산과 삼투 개념에 관한 학생들의 이해도 및 오개념의 원인으로서의 교과서분석. 한국과학교육학회지, 17(2), 191-200.
  5. 김범기, 권재술 (1995). 과학개념과 인지적 갈등의 유형이 학생들의 개념 변화에 미치는 영향. 한국과학교육학회지, 15(4), 472-486.
  6. 김조연, 신애경, 박국태, 최병순 (2001). 사회적 상호작용을 강조한 과학탐구실험의 효과. 한국과학교육학회지, 45(5), 470-480.
  7. 김주현, 이동준, 김선경, 강성주, 백성혜 (2000). 입자론의 관점에서 본 확산과 용해 개념에 관련된 과학 교과서 및 인터넷 자료 분석과 컴퓨터 수업 보조자료의 개발. 대한화학회지, 44(6), 611-624.
  8. 노태희, 임희연, 강석진 (2000a). 변칙 사례에 대한 학생들의 반응 유형. 한국과학교육학회지, 20(2), 288-296.
  9. 노태희, 임희연, 강석진 (2000b). 성과 나이에 따른 인지 갈등 유발 및 개념 변화의 비교. 한국과학교육학회지, 20(4), 634-641.
  10. 이무, 박승재 (1987). 일반계 고등학교 과학교육실태 비교분석. 한국과학교육학회지, 7(2), 71-87.
  11. 이화정, 강성주 (2005). 교사양성 대학에서의 일반화학실험 개선과 적용. 한국과학교육학회지, 25(3), 346-352.
  12. 하성자 (2004). 중등 과학 교사들의 엔트로피 관련 과학개념 조사. 한국교원대학교 석사학위논문.
  13. 허미연, 전혜숙, 백성혜 (2008). 용해.확산과 관련된 혼합현상에 대한 고등학생들의 개념 유형 분석. 대한화학회지, 52(1), 73-83.
  14. 홍정인, 김연수, 권재술 (2007). 작용.반작용과 전기회로 학습과제에서 인지갈등과 결과예측에 따른 대학생의 응답특성. 한국과학교육학회지, 27(4). 354-365.
  15. Atkins, P., & Jones, L. (2008). Chemical principles. 4th ed. New York: W. H. Freeman and Company. pp.158-160.
  16. Bell, J. A. (2005). Chemistry: A project of the american chemical society. New York: W. H. Freeman and Company.
  17. Barrow, G. M. (1996). Physical chemistry. 6th ed. New York: McGraw-Hill.
  18. Berry, R. S., Rice, S. A., & Ross, J. (2000). Physical chemistry. 2nd ed. New York: Oxford University Press.
  19. Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1-40. https://doi.org/10.1207/s1532690xci1501_1
  20. Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14(2), 161-199. https://doi.org/10.1207/s15327809jls1402_1
  21. Christianson, R. G., & Fisher, K. M. (1999). Comparison of student learning about diffusion and osmosis in constructivist and traditional classrooms. International Journal of Science Education, 21(6), 687-698. https://doi.org/10.1080/095006999290516
  22. Crooks, J. E. (1989). Measurement of diffusion coefficients. Journal of Chemical Education, 66(7), 614-615. https://doi.org/10.1021/ed066p614
  23. Domin, D. S. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543-547. https://doi.org/10.1021/ed076p543
  24. Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688. https://doi.org/10.1080/09500690305016
  25. Fate, G., & Lynn, D. G. (1990). Molecular diffusion coefficient: Experimental determination and demonstration. Journal of Chemical Education, 67(6), 536-538. https://doi.org/10.1021/ed067p536
  26. Graham, T. (1833). On the law of the diffusion of gases. The London and Edinburgh Philosophical Magazine and Journal of Science, 2, 175-190.
  27. Graham, T. (1876). On the motion of gases. Part I. Chemical and Physical Researches. London: Edingburgh University Press. pp. 90- 108.
  28. Graham, T. (1995). On the law of the diffusion of gases. Journal of Membrane Science, 100, 17-21. https://doi.org/10.1016/0376-7388(94)00228-Q
  29. Hofstein, A. (2004). Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory: A case study. International Journal of Science Education, 26(1), 47-62. https://doi.org/10.1080/0950069032000070342
  30. Keenan, C. W., & Wood, J. H. (1961). General college chemistry. 2nd ed. New York: Harper and Brothers. p. 115.
  31. Lederman, N. G., & Gess-Newsome, J. (2002). Reconceptualizing secondary science teacher education. In J. Gess-Newsome, & N. G. Lederman (Eds.), Examining pedagogical knowledge (pp. 199-213). Dordrecht, The Netherlands: Kluwer.
  32. Levine, I. R. (2002). Physical Chemistry. 5th ed. New York: McGraw-Hill. ch15. Kinetic theory of gases.
  33. Limon, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357-380. https://doi.org/10.1016/S0959-4752(00)00037-2
  34. Lunetta, V. N. (1998). The school science laboratory: History perspectives and context of contemporary teaching. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education (pp. 249-262). London: Kluwer Academic Publisher.
  35. Marriam, S. B. (1998). Qualitative research and case study applications in education. San-Francisco: Jossey-Bass Publishers.
  36. Mason, E. A., & Kronstadt, B. (1967). Graham's laws of diffusion and effusion. Journal of Chemical Education, 44(12), 740-744. https://doi.org/10.1021/ed044p740
  37. Mason, E. A., & Evans, R. B., III. (1969). Graham's laws: Simple demonstrations of gases in motion: Part I, Theory. Journal of Chemical Education, 46(6), 358-364. https://doi.org/10.1021/ed046p358
  38. McQuarrie, D. A., & Simon, J. D. (1997). Physical chemistry: A molecular approach. California: University Science Books.
  39. Metiu, H. (2006). Physical chemistry. New York: Taylor and Francis Group.
  40. National Research Council. (1996). National science education standards. Washington DC: National Academy Press.
  41. Nelson, R. N. (1995). Diffusion of water vapor: A physical chemistry laboratory experiment. Journal of Chemical Education, 72(6), 567-569. https://doi.org/10.1021/ed072p567
  42. Odom, A. L., & Barrow, L. H. (1995). Development and application of a two-tier diagnostic test measuring college biology students'understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45-61. https://doi.org/10.1002/tea.3660320106
  43. Panizzon, D. (2003). Using a cognitive structural model to provide new insights into students' understandings of diffusion. International Journal of Science Education, 25(12), 1427-1450. https://doi.org/10.1080/0950069032000052108
  44. Shoemaker, D. P., Garland, C. W., & Nibler, J. W. (1996). Experiments in physical chemistry. 6th ed. New York: McGraw-Hill. pp.134-144.
  45. Slisko, J., & Dykstra, D. (1997). The role of scientific terminology in research and teaching: Is something important missing? Journal of Research in Science Teaching, 34(6), 655-660. https://doi.org/10.1002/(SICI)1098-2736(199708)34:6<655::AID-TEA7>3.0.CO;2-M
  46. Spotz, E. L., & Hirschfelder, J. O. (1951). Liesegang ring formation arising from diffusion of ammonia and hydrogen chlorine gases through air. Journal of Chemical Physics, 19, 1251.
  47. Taitelbaum, D., Namlok-Naaman, R., Carmeli, M. C., & Hofstein, A. (2008). Evidence for teachers'change while participating in a continuous professional development programme and implementing the inquiry approach in the chemistry laboratory. International Journal of Science Education, 30(5), 593-617. https://doi.org/10.1080/09500690701854840
  48. Westbrook, S. L., & Marek, E. A. (1991). A cross-age study of student Understanding of the concept of diffusion. Journal of Research in Science Teaching, 28(8), 649-660. https://doi.org/10.1002/tea.3660280803
  49. Zumdahl, S. S., & DeCoste, D. J. (2008). Introductory chemistry: A foundation. 6th ed. Boston: Houghton Mifflin.

Cited by

  1. 용해, 확산, 분출의 정의와 교과서 서술에 대한 재고찰 vol.31, pp.6, 2010, https://doi.org/10.14697/jkase.2011.31.6.1009