DOI QR코드

DOI QR Code

Evaluation of Phosphorus Release Potential in Arable land with Different Landuse by Phosphorus Threshold

변곡점을 이용한 영농형태별 토양 인산 유출 잠재력 평가

  • Lee, Seul-Bi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Chang-Hoon (Department of Crop Sciences, University of Illlionis) ;
  • Hong, Chang-Oh (Plant Science Department, South Dakota State University) ;
  • Lee, Yong-Bok (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, Pil-Joo (Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • Received : 2010.12.01
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

Heavy application of fertilizer and manure in excess from the optimum requirement for crop growth can increase phosphorus (P) accumulation and P release potential in soils. In this study, the relationship between soil test P and 0.01M $CaCl_2$ extractable P was analysed to evaluate the P release potential of agricultural soils under different land-use. The paddy, upland, plastic film house(PFH) soils were sampled from Tongyoung and Changnyeong, and Daegok areas in Gyeongnam province, respectively. With respect to the P accumulation, available P contents in upland and PFH soils were 619 and 796 mg $P_2O_5$/kg, respectively indicating that different land-use types can greatly impact soil P accumulation. As soil available P was increased in the paddy soil, the content of 0.01M $CaCl_2$ extractable P also linearly increased without change point. Comparatively, P threshold were detected at 520 mg $P_2O_5$/kg in both upland and PFH soils, indicating that P release potential were higher in these land-use systems. For reducing P release from agricultural soils, management of optimum P content is needed in soils possessing high P release potential. Further, the change point value, if it is to be used as an environmental indicator, requires more detailed investigation to cover a wide range of soil characteristics.

우리나라 농경지 이용형태에 따라서 인산유출 잠재력과 합리적인 농경지 인산관리 기준을 설정하기 위해서 경남 통영시, 창녕시 및 진주시의 논, 밭, 시설재배지 토양을 각각 100, 100, 75 곳에서 채취하여 인산유출 변곡점을 분석하였다. 조사지역의 논, 밭, 시설재배지의 평균 유효인산 함량은 각각 86, 619, 796 mg $P_2O_5$/kg로 농경지 이용형태에 따라 토양의 인산함량은 큰 차이를 보였다. 논 토양에서는 유효인 산함량이 증가함에 따라 0.01M $CaCl_2$ 함량도 직선적으로 증가하여 변곡점이 나타나지 않았다. 반면 밭과 시설재배지에서는 토양 유효 인산 함량이 약 520 mg $P_2O_5$/kg에서 0.01M $CaCl_2$ 가용성 인산 함량이 급격하게 증가하는 변곡점이 확인되었다. 따라서 밭과 시설재배지에서 주변 수계로 인산 유출량을 저감하기 위해서는 농경지 유효인산 함량을 520 mg $P_2O_5$/kg 이하로 관리하는 것이 바람직하다고 판단된다.

Keywords

References

  1. Addiscott, T. M., Thomas, D. 2000. Tillage, mineralization and leaching: phosphate. Soil & Tillage Res. 53, 255-273. https://doi.org/10.1016/S0167-1987(99)00110-5
  2. Choi, M. T., Lee, J. I., Yun, Y. U., Lee, J. E., Lee, B. C., Yang, E. S., Lee, Y. H., 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam province. Korean J. Soil Sci. Fert. 43(2), 153-159.
  3. Hesketh, N., Brookes, P.C. 2000. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 29, 105-110. https://doi.org/10.2134/jeq2000.00472425002900010013x
  4. Kim, Y. W., 1996. Impacts of fertilizer on agricultural environment and its countermeasure. pp. 57-81. '96 Symposium on Agricultural environment. The Korean Society of Environmental Agriculture.
  5. Koopmans, G. F., Chardon, W.J., McDowell, R.W., 2007. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications. J. Environ. Qual. 36, 305-315. https://doi.org/10.2134/jeq2006.0131
  6. Lindsay, J. S., Qualls, G. Q., 2001. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ. Sci. Technol. 35, 4126-4131. https://doi.org/10.1021/es0106366
  7. McDowell, R. W., Trudgill, S. T., 2000. Variation of phosphorus loss from a small catchment in south Devon, U.K. Agric. Ecosys. Environ. 79, 143-157. https://doi.org/10.1016/S0167-8809(99)00154-1
  8. McDowell, R., Sharpley, A. N., 2001. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual. 30, 508-520. https://doi.org/10.2134/jeq2001.302508x
  9. Murphy, J., Riley, J. R., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  10. Pautler, M. C., Sims. J. T., 2000. Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils. Soil Sci. Soc. Am. J. 64, 765-773. https://doi.org/10.2136/sssaj2000.642765x
  11. Ponnamperuma, F. N., 1972. Chemistry of waterlogged soils. Adv. Agron. 24, 29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  12. Pote, D. H., Daniel, T. C., Sharpley, A. N., Moore, P. A., Edwards, D. R., Nichols, D. J., 1996. Relating extractable soil phosphorus to phosphorus losses in runoff. J. Environ. Qual. 60, 855-859.
  13. Sharpley, A. N., Rekolainen, 1997. Phosphorus in agriculture and its environmental implications. In: Phosphorus loss from soil to water, eds H Tunney OT Carton PC Brookes & AE Johnston. CAB International, Wallingford, pp. 1-54.
  14. Sibbesen, E., Sharpley, A. N., 1997. Setting and justifying upper critical limits for phosphorus in soils. pp. 151-176.In H. Tunney et al. (ed.) P loss from soil to water. CAB Int. Press, Oxon, England.
  15. Yoon, J. H., Jung, B. G., Kim, Y. H., 1998. Dependence of 0.01M $CaCl_{2}$ soluble phosphorus on extractable P and P sorptivity in upland soil. Korean J. Soil Sci. Fert. 31(3), 266-270.

Cited by

  1. Evaluation of Bioavailability of Phosphorus Accumulated in Arable Soils vol.31, pp.4, 2012, https://doi.org/10.5338/KJEA.2012.31.4.293