DOI QR코드

DOI QR Code

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro

LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향

  • Heo, Jeong-Wook (Climate Change & Agroeconomy Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Lee, Yong-Beom (Research Policy Bureau, On-Farm Research Division, Rural Development Administration) ;
  • Chang, Yu-Seob (Farming Automation Division, Department of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Lee, Jeong-Taek (Climate Change & Agroeconomy Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ;
  • Lee, Deog-Bae (Climate Change & Agroeconomy Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA)
  • 허정욱 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 이용범 (농촌진흥청 연구정책과) ;
  • 장유섭 (국립농업과학원 생산자동화기계과) ;
  • 이정택 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 이덕배 (농촌진흥청 국립농업과학원 기후변화생태과)
  • Received : 2010.11.10
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.

본 연구에서는 농촌진흥청에서 개발한 LED Chamber System을 이용하여 명기시간 동안 광질과 광조사 방법 제어가 단절단엽의 국화 배양소식물체(Dendranthema grandiflorum L., cv. 'Cheonsu')의 생장에 미치는 영향을 검토하였다. 실험은 청색, 적색 및 녹색의 단일광질 또는 청색+적색, 청색+녹색 및 적색+녹색의 혼합광질 조건하에서 이들 광질을 명기 16시간 동안 연속적으로 또는 초당 50회 간격과 분당 20초간격으로 간헐적으로 제어하면서 42일간 수행하였다. 총 일장을 4시간 단축한 분당 20초 간격의 간헐조사는 관행의 형광등 연속조사에 비해 국화의 절간길이 신장에 의한 신초신장을 촉진하였으나, 배양소식물체의 양적생장은 연속광 처리에 의해 유의하게 증가하였다. 한편, 명기동안 녹색광을 초당 50회 간격으로 간헐제어한 경우 연속조사에 비해 건물중이나 엽면적 증대와 같은 양적생장은 억제되었으나 형태적인 면에서의 절간신장은 촉진되었다. 따라서, LED Chamber System을 이용한 광질이나 광조사 방법의 제어는 관행의 형광등 이용 연속조사에 비해 명기시간 단축에 의한 전력소모량 감소 및 기내 배양소식물체의 생장이나 형태제어에 효과적인 배양기술로 이용 가능할 것으로 판단된다.

Keywords

References

  1. Adams, S.R., Langton, F.A., 2005. Photoperiod and plant growth. J. Hort. Sci. & Biotech. 80(1), 2-10. https://doi.org/10.1080/14620316.2005.11511882
  2. Appelgren, M., 1991. Effect of light quality on stem elongation of Pelargonium. Sci. Hort. 45, 345-406. https://doi.org/10.1016/0304-4238(91)90081-9
  3. Bula, R.J., Morrow, T.W., Tibbitts, T.W., Barta, D.J., Ignatius, R.W., Martin, T.S., 1991. Light-emitting diodes as a radiation source for plants. HortSci. 120, 808-813.
  4. Casal, J.J., 2000. Phytochromes, Cryptochromes, Phototropin: Photoreceptor interactions in plants. PhotoChem. PhotoBiol. 71(1), 1-11. https://doi.org/10.1562/0031-8655(2000)071<0001:PCPPII>2.0.CO;2
  5. Folta, K.M., 2004. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 135, 1407-1416. https://doi.org/10.1104/pp.104.038893
  6. Gepstein, S., Thimann, K.V., 1980. The effect of light on the production of ethylene from 1-aminocyclopropane- 1-carboxylic acid by leaves. Planta. 149, 196-199. https://doi.org/10.1007/BF00380882
  7. Heo, J.W., Lee, C.W., Chakrabarty, D., Paek, K.Y., 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul. 38, 225-230. https://doi.org/10.1023/A:1021523832488
  8. Heo, J.W., Lee, C.W., Murthy, H.N., Paek, K.Y., 2003. Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv ‘Dixie White’. Plant Growth Regul. 40, 7-10. https://doi.org/10.1023/A:1023096909497
  9. Heo, J.W., Shin, K.S., Kim, S.K., Paek, K.Y., 2006. Light quality affects in vitro growth of grape ‘Teleki 5BB’. J. Plant Biol. 49, 276-280. https://doi.org/10.1007/BF03031155
  10. Heo, .JW., Lee, Y.B., Lee, D.B., Chun, C., 2009. Light quality affects growth, net photosynthetic rate, and ethylene production Ageratum, African Marigold, and Salvia seedlings. J. Korean Hort. Sci. & Tech. 27(2), 187-193.
  11. Heo, .JW., Lee, Y.B., Kim, D.E., Chang, Y.S., Chun. C., 2010. Effects of supplementary LED lighting on growth and biochemical parameters in Dieffenbachia amoena 'Camella' and Ficus elastica 'Melany'. J. Korean Hort. Sci. & Tech. 28(1), 51-58.
  12. Khattak, A.M. Pearson, S., 2005. Light quality and temperature effects on antirrhinum growth and development. J. Zhejiang Univ. Sci. B. 6(2), 119-124.
  13. Khattak, A.M., Pearson, S., Johnson, C.B., 2004. The effects of far red spectral filters and plant density on the growth and development of chrysanthemum. Sci. Hort. 102, 335-341. https://doi.org/10.1016/j.scienta.2004.05.001
  14. Kim, S.J., Hahn, E.J., Heo, J.W., Paek K.Y., 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101, 143-151. https://doi.org/10.1016/j.scienta.2003.10.003
  15. Kozai, T., Watanabe, K., Jeong, B.R., 1995. Stem elongation and growth of Solanum tuberosum L. in vitro in response to photosynthetic photon flus, photoperiod and difference in photoperiod and dark period temperatures. Sci. Hort. 64(1), 1-9. https://doi.org/10.1016/0304-4238(95)00828-4
  16. Kurilcik, A., Miklusyte-Canova, R., Dapkuniene, S., Zilinskaite S., Kurilcik, G., Tamulaitis, G., Duchovskis, P., Zukauskas, A., 2008. In vitro culture of chrysanthemum plantlets using light-emitting diodes. Central Euro. J. Biol. 3(2), 161-167. https://doi.org/10.2478/s11535-008-0006-9
  17. Lee, B.J., Won, M.K., Choi, T.Y., Kim, K.W., Lee, J.S., 2005. Spectral properties of sunlight and phytochrome photoequilibrium as influenced by leaf number in chrysanthemum. J. Korean Hort. Sci. 46(2), 161-167.
  18. Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Oyaert, E., Volckaert, E., Debergh, P.C., 1999. Growth a chrysanthemum under coloured plastic films with different light qualities and quantities. Sci. Hort. 79, 195-205. https://doi.org/10.1016/S0304-4238(98)00207-6
  20. Saebo, A., Krekling, T., Appelgren, M., 2000. Influence of light quality on in vitro photosynthesis, leaf morphometry, leaf anatomy and field performance in micropropagated Betula pendula Rooth. Acta Hort. Abst. No. 327.
  21. Schuerger, A.C., Brown, C.S., 1994. Spectral quality may be used to alter plant disease development in CELSS. Adv. Space Res. 14, 395-398.
  22. Sivakumar, G., Heo, J.W., Kozai, T., Paek, K.Y., 2006. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hort. Sci. & Biotech. 81(3), 546-548. https://doi.org/10.1080/14620316.2006.11512101
  23. Sun, J., Nishio, J.N., Vogelmann, T.C., 1998. Green light drives $CO_{2}$ fixation deep within leaves. Plant Cell Physiol. 39(10), 1020-1026. https://doi.org/10.1093/oxfordjournals.pcp.a029298
  24. Tennessen, D.J., Singrass, E.L., Sharkey, T.D., 1994. Light emitting diodes as a light source for photosynthesis research. Photosynthesis Res. 39, 85-92. https://doi.org/10.1007/BF00027146

Cited by

  1. Supplementary Blue and Red Radiation at Sunrise and Sunset Influences Growth of Ageratum, African Marigold, and Salvia Plants vol.30, pp.4, 2011, https://doi.org/10.5338/KJEA.2011.30.4.382
  2. Effects of Red, Blue, White, and Far-red LED Source on Growth Responses of Wasabia japonica Seedlings in Plant Factory vol.31, pp.4, 2013, https://doi.org/10.7235/hort.2013.13011
  3. Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type vol.32, pp.3, 2013, https://doi.org/10.5338/KJEA.2013.32.3.193
  4. Early Growth, Pigmentation, Protein Content, and Phenylalanine Ammonia-lyase Activity of Red Curled Lettuces Grown under Different Lighting Conditions vol.30, pp.1, 2012, https://doi.org/10.7235/hort.2012.11118
  5. Plant Growth Absorption Spectrum Mimicking Light Sources vol.8, pp.8, 2015, https://doi.org/10.3390/ma8085240