DOI QR코드

DOI QR Code

Investigation of Source Dependent Optical and Microphysical Characteristics of Aerosol Using Multi-wavelength Raman Lidar in Anmyun, Korea

다파장 라만 라이다를 이용한 발생지에 따른 안면도 지역 에어러솔의 광학적 및 미세물리적 특성

  • Noh, Young-Min (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University) ;
  • Muller, Detlef (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology)
  • Received : 2010.05.20
  • Accepted : 2010.08.20
  • Published : 2010.10.31

Abstract

We present optical and microphysical particle properties of aerosol retrieved by multi-wavelength Raman lidar at Anmyun island ($36.32^{\circ}N$, $126.19^{\circ}E$), Korea. The results present aerosol properties in various height layers of the atmospheric pollution layers observed over the Korean peninsula on eight consecutive days (27, 28, 29, 30 and 31 May, 4, 5 and 7 June) in 2005 at Anmyun island. We found anthropogenic pollution on 27, 28, and 29 May and local haze on other measurement days. The origin of the particle plumes was determined by simulations of FLEXPART. The source regions of the particles resulted in rather clear differences between the optical and microphysical properties of the pollution layers. The single-scattering albedo of anthropogenic aerosols from China ($0.91{\pm}0.01$ at 532 nm) were lower than the single-scattering albedo of local haze aerosols ($0.95{\pm}0.01$ at 532 nm). Local haze aerosols show larger effective radii of $0.24{\pm}0.02\;{\mu}m$ at relative humidity of 55~75%. The effective radii of anthropogenic aerosols are $0.20{\pm}0.2\;{\mu}m$ and $0.27\;{\mu}m$ at relative humidity of 25~50%.

Keywords

References

  1. Andreae, M.O., O. Schmid, H. Yang, D. Chand, J. Yu, Y. Zhang, and L. Zeng (2005) Aerosol optical and chemical properties in urban Guangzhou, China, Proceeding of the 2005 Spring Meeting of AGU, abstract #A21A-23.
  2. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Optics Letters, 15, 746-748. https://doi.org/10.1364/OL.15.000746
  3. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Applied Optics, 31, 7113-7131. https://doi.org/10.1364/AO.31.007113
  4. Bates, T.S., B.J. Huebert, J.L. Gras, F.B. Griffiths, and P.A. Durkee (1998) International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE 1): Overview, J. Geophys. Res., 103, 16297-16318. https://doi.org/10.1029/97JD03741
  5. Carrico, C.M., M.J. Rood, J.A. Ogren, X.C. $Neusu{\ss}$, A. Wiedensohler, and J. Heintzenberg (2000) Aerosol optical properties at Sagres, Portugal during ACE-2, Tellus-B 52B, 694-715.
  6. Carrico, C.M., P. Kus, M.J. Rood, P.K. Quinn, and T.S. Bates (2003) Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity, J. Geophys. Res., 108(D23), 8650, doi:10.1029/2003JD003405.
  7. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley Jr., J.E. Hansen, and D.J. Hofmann (1992) Climate forcing by anthropogenic aerosols, Science, 255, 423-430. https://doi.org/10.1126/science.255.5043.423
  8. Cheng, Y.F., M. Berghof, R.M. Garland, A. Wiedensohler, B. Wehner, T. Muller, H. Su, Y.H. Zhang, P. Achtert, A. Nowak, U. Poschl, T. Zhu, M. Hu, and L.M. Zeng (2009) Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China, J. Geophys. Res, 114, D00G10, doi:10.1029/2008JD010883.
  9. Eck, T.F., B.N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H.B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Geophys. Res, 110, D06202, doi:10.1029/2004JD005274.
  10. Han, J.S., Y.M. Kim, J.Y. Ahn, B.J. Kong, J.S. Choi, S.U. Lee, and S.J. Lee (2006) Spatial distribution and variation of long - range transboundary air pollutants flux during 1997-2004, J. Korean Soc. Atmos. Environ., 22(1), 99-106. (in Korean with English abstract)
  11. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts, Journal of Geophysical Research, 108(D23), 8633. https://doi.org/10.1029/2003JD003550
  12. Iwasaka, Y., M. Yamato, R. Imasu, and A. Ono (1998) Transport of Asian dust (KOSA) particles-importance of weak KOSA events on the geochemical cycle of soil particles Tellus, Series B-Chemical and Physical Meteorology, 40B, 494-503.
  13. Jacobson, M.Z. (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697. https://doi.org/10.1038/35055518
  14. Kim, J.Y., S.C. Yoon, A. Jefferson, and S.W. Kim (2006) Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001, Atmospheric Environment, 40, 1550-1560. https://doi.org/10.1016/j.atmosenv.2005.10.044
  15. Lee, D.H., K.H. Lee, J.E. Kim, and Y.J. Kim (2006) Characteristics of atmospheric aerosol optical thickness over the Northeast Asia using TERRA/MODIS data during the year 2000-2005, Atmoshpere, 16(2), 85-96.
  16. Lee, K.H. and Y.J. Kim (2004) Russian forest fire smoke aerosol monitoring using satellite and AERONET data, J. Korean Soc. Atmos. Environ., 20(4), 437-450. (in Korean with English abstract)
  17. Lee, K.H., J.E. Kim, Y.J., Kim, J. Kim, and W. von Hoyningen-Huene (2005) Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003, Atmospheric Environment, 39(1), 85-99. https://doi.org/10.1016/j.atmosenv.2004.09.032
  18. Lee, K.H., Z. Li, M.S. Wong, J. Xin, Y. Wang, W.M. Hao, and F. Zhao (2007) Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. Geophys. Res., 112, D22S15, doi:10.1029/2007JD009077.
  19. Li, Z., F. Niu, K.H. Lee, J. Xin, W.M. Hao, B. Nordgren, Y. Wang, and P. Wang (2007) Validation and understanding of moderate resolution imaging spectroradiometer aerosol products using ground-based measurements from the handheld Sun photometer network in China, J. Geophys. Res., 112, D22S07, doi:10.1029/2007JD008479.
  20. Mallet, M., J.C. Roger, S. Despiau, J.P. Putaud, and O. Dubovik (2004) A study of the mixing state of black carbon in urban zone, J. Geophys. Res., 109, D04202, doi:10.1029/2003JD003940.
  21. Muller, D., I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl (2005) Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res, D17201, doi:10.1029/2004JD005756.
  22. Muller, D., M. Tesche, H. Eichler, R. Engelmann, D. Althausen, A. Ansmann, Y.F. Cheng, Y.H. Zhang, and M. Hu (2006) Strong particle light-absorption over the Pearl River Delta (South China) and Beijing (North China) determined from combined Raman lidar and Sun photometer observations, Geophys. Res. Letts., 33, L20811, doi:10.1029/2006GL027196.
  23. Muller, D., U. Wandinger, and A. Ansmann (1999a) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory, Applied Optics, 38, 2346-2357. https://doi.org/10.1364/AO.38.002346
  24. Muller, D., U. Wandinger, and A. Ansmann (1999b) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation, Applied Optics, 38, 2358-2368. https://doi.org/10.1364/AO.38.002358
  25. Noh, Y.M., Y.M. Kim, Y.J. Kim, and B.C. Choi (2006) Determination of the lidar ratio using the GIST/ADEMRC multi-wavelength Raman lidar system at Anmyeon Island, J. Korean Soc. Atmos. Environ., 22(1), 1-14. (in Korean with English abstract)
  26. Noh, Y.M.,Y.J. Kim, and D. Muller (2007a) Retrieval of aerosol microphysical parameter by inversion algorithm using multi-wavelength Raman lidar data, J. Korean Soc. Atmos. Environ., 23(1), 97-109. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2007.23.1.097
  27. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama (2007b) Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, doi:10.1016/j.atmosres.2007.03.006.
  28. Noh, Y.M.,Y.J. Kim, and D. Muller (2008) Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42, 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  29. Noh, Y.M., D. Müller, D.H. Shin, H.L. Lee, J.S. Jung, K.H. Lee, M. Cribb, Z. Li, and Y.J. Kim (2009) Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea, Atmospheric Environment, 43, 879-888. https://doi.org/10.1016/j.atmosenv.2008.10.058
  30. Raes, F., T. Bates, F. McGovern, and M. VanLiedekerke (2000) The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results, Tellus, B, 52, 111-125. https://doi.org/10.1034/j.1600-0889.2000.00124.x
  31. Ramanathan, V. and A.M. Vogelmann (1997) Greenhouse effect, atmospheric solar absorption, and the Earth’s radiation budget: From the Arrhenius-Langely era to the 1990’s, Ambio, 26(1), 38-46.
  32. Ramanathan, V. and F. Feng (2009) Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment, 43, 37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063
  33. Ramanathan, V., P.J. Crutzen, J. Lelieveld, A.P. Mitra, D. Althausen, J. Andersons, M.O. Andreae, W. Cantrell, G.R. Cass, C.E. Chung, A.D. Clarke, J.A. Coakley, W.D. Collins, W.C. Conant, F. Dulac, T.M.J. Heintzenberg, A.J. Heymsfield, B. Holben, S. Howell, J. Hudson, A. Jayaraman, T. Kiehl, T.N. Krishnamurti, D. Lubin, G. McFarquhar, T. Novakov, J.A. Ogren, I.A. Podgorny, K. Prather, K. riestley, J.M. Prospero, P.K. Quinn, K. Rajeev, P. Rasch, S. Rupert, R. Sadourny, S.K. Satheesh, G.E. Shaw, P. Sheridan, and F.P.J. Valero (2001) The Indian ocean experiment: an integrated assessment of the climate forcing and effects of the great Indo-Asian Haze, J. Geophys. Res., 106(D22), 28371-28399. https://doi.org/10.1029/2001JD900133
  34. Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa (2005) Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  35. Streets, D.G., J.S. Fu, C.J. Jang, J. Ho, K. He, X. Tang, Y. Zhang, Z. Wang, Z. Li, Q. Zhang, L. Wang, B. Wang, and C. Yu (2007) Air quality during the 2008 Beijing Olympic Games, Atmospehric Environment, 41, 480-492. https://doi.org/10.1016/j.atmosenv.2006.08.046
  36. Tesche, M., A. Ansmann, D. Muller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang (2007) Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China, Applied Optics, 46, 6302-6308. https://doi.org/10.1364/AO.46.006302
  37. Veselovskii, I., A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D.N. Whiteman (2002) Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Applied Optics, 41, 3685-3699. https://doi.org/10.1364/AO.41.003685
  38. Veselovskii, I., A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D.N. Whiteman (2004) Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution, Applied Optics, 43, 1180-1195. https://doi.org/10.1364/AO.43.001180