Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit

황해 주변 강 하구 퇴적물의 점토광물 함량 특성과 대륙붕 니질대 퇴적물의 기원

  • Choi, Jin-Young (Department of Oceanography, Kunsan National University) ;
  • Lim, Dhong-Il (South Sea Research Institute, Korea Ocean Research and Development Institute) ;
  • Park, Chan-Hong (Department of Oceanography, Kunsan National University) ;
  • Kim, So-Young (South Sea Research Institute, Korea Ocean Research and Development Institute) ;
  • Kang, So-Ra (South Sea Research Institute, Korea Ocean Research and Development Institute) ;
  • Jung, Hoi-Soo (Research Group for Marine Resources in the EEZ Korea Ocean Research and Development Institute)
  • 최진용 (군산대학교 해양학과) ;
  • 임동일 (한국해양연구원 남해특성연구부) ;
  • 박찬홍 (군산대학교 해양학과) ;
  • 김소영 (한국해양연구원 남해특성연구부) ;
  • 강소라 (한국해양연구원 남해특성연구부) ;
  • 정회수 (한국해양연구원 동북아-EEZ자원연구단)
  • Published : 2010.10.30

Abstract

To understand provenance and depositional processes of fine-grained sediments (< 2 ${\mu}m$) in the Yellow Sea, clay mineral contents of surface sediments from estuaries of Korean and Chinese rivers and core sediments from the central Yellow Sea mud deposit were analyzed. According to the results, illite is the predominant clay mineral in all river sediments, with a range of 47-64%, followed by chlorite (21-35%), Kaolinite (8-16%) and smectite (1-19%) in all river sediments. Characteristically, Korean river sediments are enriched in kaolinite and chlorite, but depleted in smectite, compared with Hunaghe and/or Yangtze river sediments. Furthermore, Yangtze River sediment seems to be illite-rich and smectite-poor, whereas Huanghe sediments are characterized by very high smectite content. So, this relative difference in contents of clay minerals shows that the illite/(kaolinite+chlorite) ratio and smectite/illite ratio can be utilized as an useful indicators for the provenance discrimination between Korean and Chinese rivers, and further between Huanghe and Yangzte rivers, respectively, in the Yellow Sea shelf sediments. Down-core variations in values of these indicators, furthermore, suggest a distinct change in fine-grained sediment provenance of the central Yellow Sea mud deposit (CYSM): the lower part of the deposit was largely composed of Huanghe-drived sediments, whereas the upper part including the surface layer has been under the influence of Yangtze River sediments. This result suggests that sediments discharged from Huanghe also have a wide influence on the sedimentology of the Yellow Sea and northern East China Sea. Such a dominance of the Yangtze River sediments in the Yellow Sea shelf is suggested to be linked to complex current a dominance of the Yangtze River sediments in the Yellow Sea shelf is suggested to be linked to complex current regime, particularly associated with development and intrusion of Kuroshio Current which would have considerably influenced dispersion and deposition of the Yangtze River sediments.

황해 대륙붕에 분포하는 점토(2 ${\mu}m$ 이하 입자) 퇴적물의 기원지와 퇴적과정을 이해하기 위해 황해로 유입되는 주요 강(한국의 한강, 금강, 만경-동진강, 영산강, 그리고 중국의 황하와 양쯔 강)의 하구 표층 퇴적물과 대륙붕 니질대 코어 퇴적물에 대한 점토광물 함량 특성을 분석하였다. 모든 시료들에서 일라이트 함량(47~64%)이 가장 높고, 다음으로 녹니석(21~35%), 고령석(8~16%), 스멕타이트(1~19%) 순으로 낮다. 한국의 강 하구 퇴적물은 높은 녹니석+고령석(kaolinite+chlorite) 함량, 양쯔 강의 하구 퇴적물은 높은 일라이트(illite, I) 함량, 황하강의 하구 퇴적물은 높은 스멕타이트(smectite, S) 함량에 의해 서로 뚜렷하게 구분된다. 특히 녹니석(chlorite,C)+고령석(kaolinite, K)에 대한 일라이트의 함량 비(I/K+C ratio)는 황해 대륙붕 니질 퇴적물에서 한국과 중국강 퇴적물을 구분하고, 일라이트에 대한 스멕타이트의 함량 비(S/I ratio)는 중국의 황하와 양쯔 강 퇴적물을 구분하는 유용한 지시자이다. 이들 점토광물학적 지시자들은 황해 중앙 니질대 퇴적층에서 황하의 영향은 하부 퇴적층에서 상부 퇴적층으로 갈수록 감소한 반면, 양쯔 강의 영향은 크게 증가한 퇴적과정을 잘 보여준다. 이러한 기원지의 변화는 황해의 복잡한 해류 패턴과 밀접한 관련이 있으며, 특히 현세 해수면 상승에 따른 황해에서의 쿠로시오의 발달과 유입이 양쯔 강 퇴적물의 확산과 퇴적에 큰 영향을 미쳤음을 시사한다.

Keywords

References

  1. 문동혁, 김순오, 이희일, 신동혁, 신경훈, 조현구, 2007, 황해 표층 퇴적물의 X-선 광물정량분석; 2001년 황해 2차 탐사 시료. 한국광물학회지, 20, 203-212.
  2. 문동혁, 이희일, 신경훈, 도진영, 조현구, 2009, 정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층 퇴적물의 광물분포 연구. 한국광물학회지, 22, 49-61.
  3. 문동혁, 이희일, 신동혁, 신경훈, 조현구, 2008, 황해표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성. 한국광물학회지, 21, 289-295.
  4. 박찬홍, 2010, 황해 대륙붕 퇴적물 코어의 점토광물 연구. 군산대학교 석사학위논문, pp. 104.
  5. 정회수, 임동일, 유해수, 2006, 북동중국해 코아 퇴적물의 희토류원소 분포 양상과 기원. 자원환경기질, 39, 39-51.
  6. 윤정수, 임동일, 변종철, 정회수, 2005, $^{87}Sr/^{86}Sr$ 비를 이용한 동중국해 대륙붕 퇴적물의 기원 연구. 한국해양학회지[바다], 10, 92-99.
  7. Alexander, C.X., DeMaster, D.J. and Nittrouer, C.A., 1991, Sediment accumulation in a modern epicontinental-shelf setting in the Yellow Sea. Marine Geology, 98, 51-72. https://doi.org/10.1016/0025-3227(91)90035-3
  8. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Antlantic Oceqan and adjacent. Bulletin, 76, 803-832.
  9. Brindley, G.W. and Brown, G., 1980, Crystal structures of clay minerals and their X-ray identification: Mineralogical Society Monograph No. 5, Mineralogical Society, 495 pp.
  10. Chamley, H., 1989, Clay sedimentology. Springer-Verlag Berlin Heidelberg, 620 pp.
  11. Cho, Y.G., Lee, C.B. and Choi, M.S., 1999, Geochemistry of surface sediments off the southern and western coast of Korea. Marine Geology, 159, 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  12. DeMaster, D.J., Mckee, B.A., Nittrouer, C.A., Qian, J.G. and Cheng, G.D., 1985, Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4, 143-158. https://doi.org/10.1016/0278-4343(85)90026-3
  13. Esquevin, J., 1969, Influence de la composition chimique des argiles sur le cristallinite, Bulletin Centre Research Pau, S.N.P.A., 3, 147-154.
  14. Geological and Mineralogical Institute (of Korea), 1973, Geologic Map of Korea Kwangju, Jeonju, Seosan and Daijeon Quandrangles, scale 1:250,000.
  15. Gibbs, R. J., 1965. Error due to segregation in quantitative clay mineral X-ray diffraction mounting techniques. American Mineralogy, 50, 741-751.
  16. Gibbs, R. J., 1977, Clay mineral segregation in the marine environment. Journal of Sedimentological Petrology, 47, 237-243.
  17. Hu, D.X., 1984, Upwelling and sedimentation dynamics I. The role of upwelling in sedimentation in the Huanghe Sea and East China Sea-a description of general features. Chinese Journal of Oceanological Limnology, 2, 12-19. https://doi.org/10.1007/BF02888388
  18. Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friendrichsen, H., Flehming, W., Hochstrasser, K., Roggwiler, P. and Schwandler, H., 1986, The evolution of illite ot muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contribuet Mineralogical Petrology, 92; 157-180. https://doi.org/10.1007/BF00375291
  19. Ingram, R.L., 1971, Sieve analysis. In: Carver, RE (ed), Procedures in sedimentary petrology. Wiley-Inter Science, 49-67.
  20. Jeong, G.Y., Hilier, S. and Kemp, R.A., 2008, Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: Implications for loess. provenance and weathering. Quaternary Scinece Review, 27, 1271-1287. https://doi.org/10.1016/j.quascirev.2008.02.006
  21. Khim and Park, 1992, Smectite as possible source-indicative clay mineral in the Yellow Sea. Geo-Marine Letters, 12, 228-231. https://doi.org/10.1007/BF02091843
  22. Koshikawa, M.K., Takamatsu, T., Takada, J., Zhu, M., Xu, B., Chen, Z., Murakami, S., Xu, K., and Watanabe, M., 2007. Distributions of dissolved and particulate elements in the Yangtze estuary in 1997-2002: background data before the closure of the Three Gorges Dam, Estuarine, Coastal and Shelf Science, 71, 26-36. https://doi.org/10.1016/j.ecss.2006.08.010
  23. Lee, H.J. and Chough, S.K., 1989, Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 87, 195-205. https://doi.org/10.1016/0025-3227(89)90061-3
  24. Lee, H.J. and Chu, Y.S., 2001, Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan. Mud Belt. Journal of Sedimentary Research, 71,144-154. https://doi.org/10.1306/040700710144
  25. Lim, D.I., 2003. Geochemical compositions of coastal sediments around Jeju Island, Soth Sea of Korea: potential provenance of sediments. Journal of Korean Earth Science Society, 24, 337-345.
  26. Lim, D.I., Kim, H.N. and Jung, H.S., 2003, Geochemical-mineralogical characteristics of the pre-Holocene sediments in Haenam Bay, west coast of Korea. Geo-Marine Letters, 22, 210-217.
  27. Lim, D.I., Kim, H.N. and Jung, H.S., Rho, K.C. and Ahn, K.S., 2007, Recent sediment accumulation and origin of shelf mud deposits in the Yellow Sea and East China Seas. Progress in Oceanography, 73, 145-159. https://doi.org/10.1016/j.pocean.2007.02.004
  28. Lim, D.I., Jung, H.S., Choi, J.Y., Yang, S. and Ahn, K.S., 2006, Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Continental Shelf Research, 26, 15-24. https://doi.org/10.1016/j.csr.2005.10.001
  29. Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D. M., Xiao, S.B. and Yang, Z.S., 2007, Flux and fate of Yangtze River sediment dilivered to the East China Sea. Geomorphology, 85, 208-224. https://doi.org/10.1016/j.geomorph.2006.03.023
  30. Liu, J., Zhu, R. and Li, J., 2003, Rock magnetic properties or the fine-grained sediment on the outer shelf of the East Cshina Sea: implication for provenance. Marine Geology, 193, 195-206. https://doi.org/10.1016/S0025-3227(02)00660-6
  31. Mlliman, J.D., Beardsley, R.C., Yang, Z.S. and Limeburner, R., 1985a, Modern Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms. Continental Shelf Research, 4, 175-188. https://doi.org/10.1016/0278-4343(85)90028-7
  32. Mlliman, J.D., Li, F., Zhao, Y.Y., Zheng, T.M. and Limeburner R., 1986, Suspended matter regime in the Yellow Sea. Progress in Oceanography, 17, 215-227. https://doi.org/10.1016/0079-6611(86)90045-5
  33. Mlliman, J.D., Shen, H.T., Yang, Z.S. and Mead, R.H., 1985b, Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 4, 37-45. https://doi.org/10.1016/0278-4343(85)90020-2
  34. Nittrouer, C.A., DeMaster, D.J. and McKee, B.A., 1984, Fine-scale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea. Marine Geology, 61, 13-24. https://doi.org/10.1016/0025-3227(84)90105-1
  35. Petschick, R., Kuhn, G. and Gingele, F.X., 1996, Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203-229. https://doi.org/10.1016/0025-3227(95)00148-4
  36. Park, S.C., Lee, H.H., Han, H.S., Lee, G.H., Kim, D.C. and Yoo, D.G., 2000, Evolution of late Quaternary mud deposits and recent budget in the southeastern Yellow Sea. Marine Geology, 170, 271-288. https://doi.org/10.1016/S0025-3227(00)00099-2
  37. Park, Y.A. and Khim, B.K., 1990, Clay minerals of the recent fine-grained sediments on the Korean continental shelves. Continental Shelf Research, 10, 1179-1191. https://doi.org/10.1016/0278-4343(90)90015-E
  38. Park, Y.A. and Khim, B.K., 1992, Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology, 104, 205-213. https://doi.org/10.1016/0025-3227(92)90095-Y
  39. Shi, X., Shen, S., Yi, H-L., Chen, Z. and Meng Y., 2003, Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea. Chinese Science Bulletin, 48, 1-7. https://doi.org/10.1007/BF03183324
  40. Stokke, P.R. and Carson, B., 1973, Variation in clay mineral X-ray diffraction results with the quantity of samples mounted. Journal of Sedimentary Petrology, 43, 957-964.
  41. Wei J., Shi, X., Li, G. and Liang, R., 2003, Clay mineral distributions in the southern Yellow Sea and their significance. Chinese Science Bulletin, 48, 7-11. https://doi.org/10.1007/BF02900934
  42. Xu, K., Milliman, J.D., Li, A., Liu, J.P., Kao, S-J. and Wan, S., 2009, Yangtze- and Taiwan-Derived Sediments in the Inner Shelf of East China Sea, Continental Shelf Research, 29, 2240-2256. https://doi.org/10.1016/j.csr.2009.08.017
  43. Yang, S.Y., Jung, H.S., Lim, D.I. and Li, C.X., 2003, A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  44. Yang, Z.S. and Liu, J.P., 2007, A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology, 240, 169-176. https://doi.org/10.1016/j.margeo.2007.02.008
  45. Yang, S.Y. and Youn, J.S., 2007, Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology, 243, 229-241. https://doi.org/10.1016/j.margeo.2007.05.001
  46. Yoo, D.G., Lee, C.W., Kim, S.P., Jin, J.H., Kim, J,K. and Han, H.C., 2002, Late Quatenary transgressive and highstand systems tracts in the northern East China Sea mid-shelf. Marine Geology, 187-313-328. https://doi.org/10.1016/S0025-3227(02)00384-5
  47. Youn, J.S., GO, G. W., 1987. Sedimentological characteristics of the surface sediments in the southern sea off Cheju Island, Korea. The Journal of the Oceanolgical Society of Korea 22, 130-142.
  48. Zhao, Y.Y., Park, Y.A., Qin, Y.S., Choi, J.Y., Gao, S., Li, F.Y., Cheng, P. and Jiang, R.H., 2001, Material source for the Eastern Yellow Sea Mud: evidence of mineralogy and geochemistry from China-Korea Joint Investigation. The Yellow Sea, 7, 22-26.
  49. Zhao, Y.Y., Park, Y.A., Qin, Y.S., Gao, S., Zhang, F.G. and Yu, J. J., 1997, Recent development in the southern Yellow Sea sedimentology: China-korea Joint investigation. Yellow Sea, 3, 47-51.