Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed

SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석

  • Oh, Dong Geun (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, In Gu (Department of Environmental Engineering, Chungbuk National University) ;
  • Kang, Moon Seong (Department of Landscape Architecture and Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 오동근 (충북대학교 환경공학과) ;
  • 정세웅 (충북대학교 환경공학과) ;
  • 류인구 (충북대학교 환경공학과) ;
  • 강문성 (서울대학교 지역시스템공학과(농업생명과학연구원))
  • Received : 2009.08.31
  • Accepted : 2009.11.25
  • Published : 2010.01.30

Abstract

The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Keywords

References

  1. 김성준, 박근애, 전무갑(2005). 토지이용의 변화가 홍수유출에 미치는 영향분석. 한국수자원학회논문집, 38(4), pp. 301-311.
  2. 박준호, 유용규, 박영곤, 윤희택, 김종건, 박윤식, 전지홍, 임경재(2008). SWMM을 이용한 춘천 거두 1지구의 LID 개념적용으로 인한 유출 감소 특성 분석. 수질보전 한국물환경학회지, 24(6), pp. 806-816.
  3. 배덕효, 이병주, 정일원(2003). 위성영상피복분류에 대한 CN값 산정(I). 한국수자원학회논문집, 36(6), pp. 985-997.
  4. 신현석, 윤용남(1993a). SWMM 모형을 이용한 도시 유역의 유출 및 NPS 오염물 배출 모의. 한국수문학회지, 26(3), pp. 125-135.
  5. 신현석, 윤용남(1993b). 도시소유역에서의 유출과 비점오염원 배출량 산정. 한국수문학회지, 26(4), pp. 85-95.
  6. 이종태, 강태호(1997). 도시 배수유역의 유출-수질 특성인자의 민감도 분석. 한국수자원학회논문집, 30(1), pp. 83-93.
  7. 이종태, 윤세의, 김정환(1994). 지표면유출 해석방법이 도시유역의 홍수량 산정에 미치는 영향. 대한토목학회지, 14(5), pp. 1167-1175.
  8. 최지용, 김병익, 박백수, 정은성(2008). 물 환경관리를 위한 불투수면 지표의 적용성 연구. 수질보전 한국물환경학회지, 24(6), pp. 776-772.
  9. 최지용, 장수환(2003). 유역관리 효율화를 위한 불투수면 지표 개발과 적용 I. 한국환경정책.평가연구원.
  10. 한강수계관리위원회(2007). 수계별 유역의 불투수율조사 및 저감방안 연구(1차년 최종보고서).
  11. 함광준, 김준현, 허범녕, 최지용, 김영진(2006). 유역의 불투수성에 따른 강우유출특성 비교. 환경영향평가학회지, 15(2), pp. 157-163.
  12. Booth, D. B. and Reinelt, L. E. (1993). Consequences of urbanization on aquatic system : Measured Effect, Degradation Thresholds, and Corrective Strategies. Watershed '93 A National Conference on Watershed Management. U. S. Environmental Protection Agency, Alexandria, Virginia, March 21-24, pp. 545-550.
  13. Chung, S. W., Gassman, P. W., Gu, R., and Kanwar, R. S. (2002). Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems. Transtions of the ASAE, 45(4), pp. 113-122.
  14. Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., and Gu, R. (1999). Validation of Epic for two water-sheds in southwest Iowa. Journal of Environmemol Quality. 28(3), pp. 971-979.
  15. Galli, J. (1991). Thermal Impacts Associated Wilh Urbanization and Stormwater Management Best Management Practices, Metropolitan Washington Council of Governments. Maryland Department of Environment, Washington. D.C.
  16. Green, C. H., Tomer, M. D., Di Luzio, M., and Arnold, J. G. (2006). Hydrologic evaluation or the soil and water assessment tool ror a large tile-drained watershed in Iowa. Transactions of the ASAE, 49(2), pp. 413-422.
  17. Huber, W. C. and Dickinson, R. E. (1988). Storm Water Management Model version 4; User's Manual. University or Florida, Gainesville, USA, Department or Environmental Engineering Sciences.
  18. Jones, R. and Clark, C. ( 1987). Impact or watershed urbanization on stream insect communities. Water Resource Bulletin, American Water Resources Association, 23(6). pp. 1047-1056 https://doi.org/10.1111/j.1752-1688.1987.tb00854.x
  19. Klein, R. D. ( 1979). Urbanization and stream quality impairment. Water Resources Bulletin, American Water Resources Association, 15, pp. 948-963. https://doi.org/10.1111/j.1752-1688.1979.tb01074.x
  20. Legates, D. R. and McCabe, G. J. (1999). Evaluating the use or "goodness of fit" measures in hydrologic and hydroclimatic model validalion. Water Resource Research, 35(1). pp. 233-241. https://doi.org/10.1029/1998WR900018
  21. McCuen, R., Johnson, P., and Ragan, R. (1996). Hydrology. FHWA-SA-96-067, Federal Highway Administration, Washington, D.C.
  22. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual model: Part1 - A discussion or principles. Journal of Hydrology, 10(3), pp. 398-409.
  23. Ramanarayanan, T. S., Williams, J. R., Dugas, W. A., Hauck, L. M., and McFarland, A. M. S. (1997). Using APEC to identify alternative practiced for animal waste management ASAE Paper, 97-2209, St. Joseph, Mich.
  24. Rossman, L. A. (2008). Storm Water Management Model User's Manual Version 5.0. EPA.
  25. Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. (2001a). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  26. Santhi, C., Arnold, J. G., Williams, J. R., Hauck, L., and Dugas, W. A. (2001b). Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE, 44(6), pp. 1559-1570.
  27. Schlleler, T. (1987). Controlling Urban Runoff- A Practical Manual ror Planning and Designing Urban Best Management Practices. Metropolitan Washington Councilor Goverments, Washington, D.C.
  28. Schlleler, T. (1994). The importance or imperviousness. Watershed Protection Techniques, Center for Watershed Protection, 1(3), pp. 100-111.
  29. Searcy, J. C. (1959). Flow-duration Curves. Water Supply Paper, United States Geological Survey, Washington, D.C., 1542A.
  30. Shaver, E., Maxted, J., Curtis, G., and Carter, D. (1995). Watershed protection using an integrated approach. In Stormwater NPDES Related Monitoring Needs, Engineering Foundation. America Society of Civil Engineers, Crested Butte, Colorado, August 7-12, 1994.
  31. Whittaker, B. N. and Reddish, D. J. (1989). Subsidence occurrence, prediction and control. Elservier, Amsterdam, Developments in Geotechnical Engineering, 56, pp. 528.