DOI QR코드

DOI QR Code

Molecular Characteristics of Extended Spectrum $\beta$-Lactamases in Escherichia coli and Klebsiella pneumoniae and the Prevalence of qnr in Extended Spectrum $\beta$-Lactamase Isolates in a Tertiary Care Hospital in Korea

Kim, Myeong-Hee;Lee, Hee-Joo;Park, Kyung-Sun;Suh, Jin-Tae

  • Published : 2010.10.01

Abstract

Purpose: Extended spectrum $\beta$-lactamases (ESBLs) are cephalosporinases that confer resistance to a wide variety of oxyimino cephalosporins and create serious therapeutic problems. In addition, the quinolone resistance qnr genes are becoming increasingly prevalent in clinical isolates, some of which also produce ESBL. This study was designed to evaluate the occurrence and genotypic distribution of ESBL producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) as well as the prevalence and distribution of qnr genes in ESBL-producing isolates in a tertiary care hospital in Korea. Materials and Methods: We tested a total of 111 ESBL-producing isolates of E. coli and K. pneumoniae, which were collected at Kyung Hee Medical Center from November 2006 to June 2008. ESBL production was determined by the Clinical and Laboratory Standards Institute (CLSI) ESBL confirmatory test. The cefotaxime and ceftazidime resistance of the ESBL-producers were transferred to azide-resistant E. coli J53 by conjugation. The presence and identity of ESBL and qnr genes were determined by polymerase chain reaction (PCR) and nucleotide sequencing. Results: The prevalence of ESBLs was 17.7% (297/1,680) of E. coli and 26.5% (240/904) of K. pneumoniae in our hospital during the study periods. Of the 111 collected isolates, 69 isolates were E. coli and 42 isolates were K. pneumoniae. The most prevalent ESBL genotype was CTX-M15. Among the ESBL-producing isolates, 4 E. coli (5.8%) and 17 K. pneumoniae (40.5%) contained qnr genes. qnrB4 was the most frequent type in both E. coli and K. pneumoniae. Conclusion: CTX-M15 was the most frequently encountered ESBL. In addition, a high prevalence of qnr genes among ESBL-producing K. pneumoniae was identified in this study.

Keywords

References

  1. Murray PR, Baron EJ, Jorgensen JH, Landry ML, Michael A, Pfaller MA. Manual of Clinical Microbiology. 9th ed. Washington: American Society for Microbiology; 2007.
  2. Bae IK, Woo GJ, Jeong SH, Park KO, Cho BK, Kim DM, et al. Prevalence of CTX-M-type extended-spectrum $\beta$-Lactamaseproducing Esherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol 2004;7:48-54.
  3. Hong SG, Kim S, Jeong SH, Chang CL, Cho SR, Ahn JY, et al. Prevalence & diversity of extended-spectrum beta -Lactamaseproducing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol 2003;6:149-55.
  4. Kang JH, Bae IK, Kwon SB, Jeong SH, Lee J, Lee WG, et al. Prevalence of Ambler class A extended-spectrum beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol 2005;8:17-25.
  5. Lee JH, Bae IK, Kwon SB, Jeong SH, Woo GJ, Lee J, et al. Prevalence of CTX-M-type extended-spectrum beta-Lactamaseproducing Escherichia coli and Klebsiella pneumoniae isolates in Korea, 2003. Korean J Clin Microbiol 2004;7:111-8.
  6. Park JH, Lee SH, Jeong SH, Kim BN, Kim KB, Yoon JD, et al. Characterization and prevalence of Escherichia coli and Klebsiella pneumoniae isolates producing an extended-spectrum beta- Lactamase from Korean hospitals. Korean J Lab Med 2003;23:18-24.
  7. Song W, Kim JS, Kim MN, Kim EC, Park YJ, Yong D, et al. Occurrence and genotypic distributions of plasmid-mediated AmpC beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae in Korea. Korean J Lab Med 2002;22:410-6.
  8. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother 2003;47:559-62. https://doi.org/10.1128/AAC.47.2.559-562.2003
  9. Wang M, Sahm DF, Jacoby GA, Hooper DC. Emerging plasmidmediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother 2004;48:1295-9. https://doi.org/10.1128/AAC.48.4.1295-1299.2004
  10. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 2007;60:394-7. https://doi.org/10.1093/jac/dkm204
  11. Jones GL, Warren RE, Skidmore SJ, Davies VA, Gibreel T, Upton M. Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum beta-lactamases. J Antimicrob Chemother 2008;62:1245-51. https://doi.org/10.1093/jac/dkn406
  12. Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. Coproduction of qnrB and armA from extended-spectrum beta-lactamaseproducing Klebsiella pneumoniae. Korean J Lab Med 2007;27:428-36. https://doi.org/10.3343/kjlm.2007.27.6.428
  13. Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother 2007;60:868-71. https://doi.org/10.1093/jac/dkm266
  14. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Occurrence of qnr-positive clinical isolates in Klebsiella pneumoniae producing ESBL or AmpC-type beta-lactamase from five pediatric hospitals in China. FEMS Microbiol Lett 2008;283:112-6. https://doi.org/10.1111/j.1574-6968.2008.01163.x
  15. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis 2008;8:68. https://doi.org/10.1186/1471-2334-8-68
  16. Bassetti M, Cruciani M, Righi E, Rebesco B, Fasce R, Costa A, et al. Antimicrobial use and resistance among Gram-negative bacilli in an Italian intensive care unit (ICU). J Chemother 2006;18:261-7.
  17. Ko CS, Sung JY, Koo SH, Kwon GC, Shin SY, Park JW. Prevalence of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med 2007;27:344-50. https://doi.org/10.3343/kjlm.2007.27.5.344
  18. CLSI. Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement, M100-S16. Wanye, PA: Clinical and Laboratory Standards Institute; 2008.
  19. Jacoby GA, Han P. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 1996;34:908-11.
  20. Bae IK, Jeong SH, Lee K, Yong D, Lee J, Hong SG, et al. Emergence of CTX-M12 and A Novel CTX-M Type Extended-Spectrum beta-Lactamaseproducing Klebsiella pneumoniae. Korean J Lab Med 2006;26:21-6. https://doi.org/10.3343/kjlm.2006.26.1.21
  21. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995;8:557-84.
  22. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933-51. https://doi.org/10.1128/CMR.14.4.933-951.2001
  23. Jones RN, Pfaller MA, Doern GV, Erwin ME, Hollis RJ. Antimicrobial activity and spectrum investigation of eight broad-spectrum beta-lactam drugs: a 1997 surveillance trial in 102 medical centers in the United States. Cefepime Study Group. Diagn Microbiol Infect Dis 1998;30:215-28. https://doi.org/10.1016/S0732-8893(97)00234-4
  24. Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y. A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 2000;184:53-6.
  25. Pai H. The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998;39: 514-9.
  26. Hong SG, Kang M, Choi JR, Lee K, Chong Y, Kwon OH. Molecular characteristics of extended-spectrum beta -Lactamases in clinical isolates of Enterobacteriaceae. Korean J Clin Pathol 2001;21:495-504.
  27. Kim J, Lim YM, Rheem I, Lee Y, Lee JC, Seol SY, et al. CTXM and SHV-12 beta-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett 2005;245:93-8. https://doi.org/10.1016/j.femsle.2005.02.029
  28. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 2005;56:698-702. https://doi.org/10.1093/jac/dki324
  29. Kim J, Kwon Y, Pai H, Kim JW, Cho DT. Survey of Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases: prevalence of SHV-12 and SHV-2a in Korea. J Clin Microbiol 1998;36:1446-9.
  30. Hopkins KL, Threlfall EJ, Karisik E, Wardle JK. Identification of novel plasmid-mediated extended-spectrum beta-lactamase CTXM-57 in Salmonella enterica serovar Typhimurium. Int J Antimicrob Agents 2008;31:85-6.
  31. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 2005;56:463-9. https://doi.org/10.1093/jac/dki245
  32. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006;6:629-40. https://doi.org/10.1016/S1473-3099(06)70599-0
  33. Shin JH, Jung HJ, Lee JY, Kim HR, Lee JN, Chang CL. High rates of plasmid-mediated quinolone resistance QnrB variants among ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections in Korea. Microb Drug Resist 2008;14:221-6. https://doi.org/10.1089/mdr.2008.0834
  34. Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother 2005;49:71-6. https://doi.org/10.1128/AAC.49.1.71-76.2005
  35. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 2002;99:5638-42. https://doi.org/10.1073/pnas.082092899
  36. Wang M, Sahm DF, Jacoby GA, Zhang Y, Hooper DC. Activities of newer quinolones against Escherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinolone resistance determinant qnr. Antimicrob Agents Chemother 2004;48:1400-1. https://doi.org/10.1128/AAC.48.4.1400-1401.2004
  37. Shin JH, Kim HR, Lee HR, Chung JI, Min K, Moon CS, et al. Etiology and antimicrobial susceptibility of bacterial pathogens causing community-acquired urinary tract infection at a tertiarycare hospital. Korean J Clin Microbiol 2005;8:142-7.
  38. Chong Y, Lee K, Okamoto R, Inoue M. Characteristics of Extended-spectrum beta-lactam hydrolyzing activity of Klebsiella pneumoniae and Escherichia coli strains isolated from clinical specimens. Korean J Infect Dis 1997;29:477-86.

Cited by

  1. Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15 vol.12, pp.None, 2012, https://doi.org/10.1186/1471-2334-12-149
  2. Prevalence and characterization of plasmid-mediated quinolone resistance genes inSalmonellaisolated from poultry in Korea vol.42, pp.3, 2010, https://doi.org/10.1080/03079457.2013.779636
  3. Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella pneumoniae Isolates from Urine Specimens in a Tertiary-Care Hospital vol.24, pp.6, 2010, https://doi.org/10.4014/jmb.1306.06036
  4. Prevalence of Quinolone Resistance Among Extended-Spectrum β -Lactamase Producing Uropathogenic Klebsiella pneumoniae vol.7, pp.6, 2010, https://doi.org/10.5812/jjm.10887
  5. Prevalence of CTX-M, TEM and SHV Beta-lactamases in Clinical Isolates of Escherichia Coli and Klebsiella Pneumoniae Isolated From Aleppo University Hospitals, Aleppo, Syria vol.10, pp.2, 2010, https://doi.org/10.5812/archcid.22540
  6. Prevalence of Quinolone Resistance Genes Among Extended-Spectrum B-Lactamase-Producing Escherichia coli in Mashhad, Iran vol.8, pp.12, 2010, https://doi.org/10.5812/jjm.16217
  7. Characteristics of the Molecular Epidemiology of CTX-M-Producing Escherichia coli Isolated from a Tertiary Hospital in Daejeon, Korea vol.26, pp.9, 2016, https://doi.org/10.4014/jmb.1603.03063
  8. 충청지역의 임상검체에서 분리된 폐렴막대균에 CTX-M형 Extended-Spectrum β-lactamases 확산 vol.14, pp.10, 2010, https://doi.org/10.14400/jdc.2016.14.10.349
  9. Antimicrobial resistance of major clinical pathogens in South Korea, May 2016 to April 2017: first one-year report from Kor-GLASS vol.23, pp.42, 2010, https://doi.org/10.2807/1560-7917.es.2018.23.42.1800047
  10. Prevalence of Extended-Spectrum β-lactamase and Integron Gene Carriage in Multidrug-Resistant Klebsiella Species Isolated from Outpatients in Yazd, Iran vol.45, pp.1, 2020, https://doi.org/10.30476/ijms.2019.45334
  11. High Frequency of qnr Genes in Urinary Isolates of Extended-Spectrum β-Lactamase (ESBL)-producing Klebsiella pneumoniae in Tehran, Iran vol.21, pp.3, 2010, https://doi.org/10.5812/semj.92032
  12. Sub‐acute toxicological and behavioural effects of two candidate therapeutics, cinnamaldehyde and eugenol, for treatment of ESBL producing‐quinolone resistant pathogenic Enterobacteriaceae vol.47, pp.6, 2010, https://doi.org/10.1111/1440-1681.13276
  13. Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms vol.7, pp.2, 2010, https://doi.org/10.3390/vetsci7020048
  14. Plasmidic Fluoroquinolone Resistance Genes in Fluoroquinolone-Resistant and/or Extended Spectrum Beta-Lactamase-Producing Escherichia coli Strains Isolated from Pediatric and Adult Patients Diagnose vol.26, pp.11, 2010, https://doi.org/10.1089/mdr.2020.0007