DOI QR코드

DOI QR Code

Micro Power Generation of a PMN-PZT Triple-morph Cantilever for Electric Harvesting Devices

Kim, In-Sung;Joo, Hyeon-Kyu;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung

  • Published : 20100100

Abstract

A piezoelectric cantilever was manufactured using a PMN-PZT thick film for an electric harvesting device. In order to find better properties, we manufactured the piezoelectric cantilever in two forms (bi-morph and triple-morph); then, the bi-morph cantilever and the triple-morph cantilever were compared as to electric micro power. The generation characteristics were investigated at various frequencies, load resistances, and masses. The output power of the bi-morph piezoelectric cantilever showed a maximum value at 0.25 g mass at 197 Hz, and the triple-morph piezoelectric cantilever showed a maximum at 0.25 g mass at 154 Hz. The piezoelectric cantilever output voltage increased with the increasing load resistance, and the output power quality was investigated by changing the load resistance, the mass, and the frequency. The bi-morph piezoelectric cantilever's output power at 33 k$\Omega$, 0.25 g, and 197 Hz was 0.23 mW at 2.75 Vrms, and the average micro power from the triple-morph piezoelectric cantilever was 0.432 mW at 6.57 Vrms and 154 Hz.

Keywords

References

  1. A. K. Tran, K. J. Yoon and N. S. Goo, J. Korean Phys. Soc. 51, 16 (2007) https://doi.org/10.3938/jkps.51.16
  2. C. S. Lee, H. J. Nam, S. S. Jang, I. J. Cho and J. U. Bu, J. Korean Phys. Soc. 51, 1374 (2007) https://doi.org/10.3938/jkps.51.1374
  3. D. Vasic, E. Sarraute, F. Costa, P. Sangouard and E. Cattan, J. Sens. Actuators A 117, 317 (2005) https://doi.org/10.1016/j.sna.2004.06.009
  4. H. M. Kim, J. S. Ahn, K. H. Lee and K. B. Lee, J. Korean Phys. Soc. 50, 1740 (2007) https://doi.org/10.3938/jkps.50.1740
  5. H. K. Joo, I. S. Kim, J. S. Song, S. J. Jeong, M. S. Kim and S. H. Jeon, J. Korean Phys. Soc. 54, 877 (2009) https://doi.org/10.3938/jkps.54.877
  6. S. Kobayashi, M. Hayakawa, Y. Okuma, I. Shimokawa, M. Shida, S. Yamashita, N. Koshizuka and K. Sakamura, First International Workshop on Networked Sensing Systems (Tokyo, Japan, 2004)
  7. H. Tanaka, G. Ono, T. Nagano, and N. Ohkubo, IEEE 2005 Custom Integrated Circuit Conference 97, 100 (2005)
  8. T. Eggborn, MS thesis, Virginia Polytechnic Institute and State University (1999)
  9. H. Prahlad, R. Kornbluh, R. Pelrine, S. Stanford, J. Eckerle and S. Oh, ISSS, Bangalore, India (2005)
  10. N. S. Shenck and J. A. Paradiso, IEEE Micro. 21, 30 (2001) https://doi.org/10.1109/40.928763
  11. H. A. Sodano, G. Park and D. J. Inman, J. Intelligent Mat. Sys. Struc. 16, 67 (2005) https://doi.org/10.1177/1045389X05047210
  12. I. S. Kim, J. S. Song, S. J. Jeong, M. S. Kim and H. K. Joo, Eletroceramic Conference XI (Manchester, UK, August 29, 2008)
  13. Q. M. Wang, X. H. Du, B. Xu and L. E. Cross, J. App. Phy. 85, 1702 (1999) https://doi.org/10.1063/1.369314

Cited by

  1. 바이몰프 압전센서의 진동에너지 수확에 관한 연구 vol.19, pp.4, 2010, https://doi.org/10.5369/jsst.2010.19.4.313
  2. Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals vol.60, pp.2, 2010, https://doi.org/10.3938/jkps.60.230
  3. Bandwidth-broadening properties by using a variable width structure in a cantilever-type piezoelectric energy scavenger vol.61, pp.6, 2010, https://doi.org/10.3938/jkps.61.908
  4. Analytic Model of Microcantilevers as Low Frequency Generator vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/897315