Epitaxial growth of highly transparent and conducting Sc-doped ZnO films on c-plane sapphire by sol–gel process without buffer

Sharma, Ruchika;Sehrawat, Kiran;Mehra, R.M.

  • Published : 20100000

Abstract

Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–el technique using zinc acetate dihydrate [$Zn(CH_3COO)_2\;2H_2O$] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [($ScNO_3\;6H_2O$)] in the solution. The influence of annealing temperature (300–550 ${^{\circ}C}$) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of $0.16^{\circ}$ are obtained at an annealing temperature of 400 ${^{\circ}C}$. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 ${^{\circ}C}$ exhibited minimum resistivity of $1.91\;{\times}\;10^{-4}\Omega$ cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 ${^{\circ}C}$ showed ultraviolet peak at -3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.

Keywords

References

  1. B. Sang, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37 (1998) L 206 https://doi.org/10.1143/JJAP.37.L206
  2. V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimova, Thin Solid Films 515 (2006) 472-476 https://doi.org/10.1016/j.tsf.2005.12.269
  3. A. Kuramata, K. Horino, K. Domen, K. Shinohara, T. Tanahashi, Appl. Phys. Lett. 67 (17) (1995) 2521 https://doi.org/10.1063/1.114445
  4. Y. Hiroyama, M. Tamura, Jpn. J. Appl. Phys. 37 (1998) L630 https://doi.org/10.1143/JJAP.37.L630
  5. N. Takahashi, K. Kaiyo, T. Nakamura, Y. Momose, H. Yamamoto, Jpn. J. Appl. Phys. 38 (1999) L454 https://doi.org/10.1143/JJAP.38.L454
  6. J. Narayan, K. Dovidenko, A.K. Sharma, S. Oktyabrsky, J. Appl. Phys. 84 (1998) 2597 https://doi.org/10.1063/1.368440
  7. P. Sagar, M. Kumar, R.M. Mehra, H. Okada, A. Wakahara, A. Yoshida, Thin Solid Films 515 (2007) 3330-3334 https://doi.org/10.1016/j.tsf.2006.09.006
  8. M. Kumar, R.M. Mehra, S.Y. Choi, Curr. Appl. Phys. 9 (2009) 737 https://doi.org/10.1016/j.cap.2008.07.002
  9. T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366 (2000) 63 https://doi.org/10.1016/S0040-6090(00)00731-8
  10. S.F. Chichibu, T. Yoshida, T. Onuma, H. Nakanishi, J. Appl. Phys. 91 (2002) 874 https://doi.org/10.1063/1.1426238
  11. M.A.L. Johnson, S. Fujita, W.H. Rowland Jr., W.C. Hughes, J.W. Cook Jr., J.F. Schetzina, J. Electron. Mater. 21 (1992) 157 https://doi.org/10.1007/BF02655831
  12. Y.F. Chen, S.K. Hong, H.J. Ko, M. Nakajima, Y. Segawa, T. Yao, Appl. Phys. Lett. 76 (2000) 245 https://doi.org/10.1063/1.125716
  13. Y. Kokubun, H. Kimura, S. Nakagomi, Jpn. J. Appl. Phys. 42 (2003) L904 https://doi.org/10.1143/JJAP.42.L904
  14. H.J. Ko, Y.F. Chen, J.M. Ko, T. Hanada, Z. Zhu, T. Fukuda, T. Yao, J. Cryst. Growth 207 (1999) 87 https://doi.org/10.1016/S0022-0248(99)00345-0
  15. P. Nunes, E. Fortunadeo, R. Martins, Thin Solid Films 383 (2001) 277 https://doi.org/10.1016/S0040-6090(00)01577-7
  16. R. Sharma, P.K. Shishodia, A. Wakahara, R.M. Mehra, Mater. Sci.-Poland 27 (2009) 233-245
  17. W.T. Lim, C.H. Lee, Thin Solid Films 353 (1999) 12 https://doi.org/10.1016/S0040-6090(99)00390-9
  18. D. Song, P. Windenborg, W. Chin, A. Aberle, Sol. Energy Mater. Sol. Cells 73 (2002) 269 https://doi.org/10.1016/S0927-0248(01)00137-4
  19. Y.S. Jung, Y.S. No, J.S. Kim, W.K. Choi, J. Cryst. Growth 267 (2004) 85 https://doi.org/10.1016/j.jcrysgro.2004.03.010
  20. A. Setiawan, H.J. Ko, S.K. Hong, Y.F. Chen, T. Yao, Thin Solid Films 445 (2003) 213 https://doi.org/10.1016/S0040-6090(03)01163-5
  21. J. Szeyrbowski, A. Dietrich, H. Hoffmann, Phys. Stat. Solidi a 78 (1983) 243 https://doi.org/10.1002/pssa.2210780129
  22. M. Kumar, R.M. Mehra, A. Wakahara, A. Yoshida, M. Ishida, J. Appl. Phys. 93 (2003) 3837 https://doi.org/10.1063/1.1556181
  23. E. Burstein, Phys. Rev. 93 (1954) 632 https://doi.org/10.1103/PhysRev.93.632
  24. S. Ghosh, A. Sarkar, S. Chaudhuri, A.K. Pal, Thin Solid Films 204 (1991) 255 https://doi.org/10.1016/0040-6090(91)90067-8
  25. M. Ohyama, H. Kozuka, T. Yoko, J. Ceram. Soc. Jpn. 81 (1998) 1622
  26. M.H. Aslan, A.Y. Oral, E. Mensur, A. Gul, E. Basaran, Sol. Energy Mater. Sol. Cells 82 (2004) 543