DOI QR코드

DOI QR Code

Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB

  • Boonyos, Patcharaporn (Institute of Molecular Biosciences, Mahidol University, Salaya Campus) ;
  • Soonsanga, Sumarin (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Boonserm, Panadda (Institute of Molecular Biosciences, Mahidol University, Salaya Campus) ;
  • Promdonkoy, Boonhiang (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
  • Published : 2010.01.31

Abstract

Binary toxin consisting of BinA and BinB from Bacillus sphaericus is toxic to mosquito larvae. BinB is responsible for specific binding to the larval gut cell membrane while BinA is crucial for toxicity. To investigate functional role of cysteine in BinB, three cysteine residues at positions 67, 161, and 241 were replaced by alanine or serine. Mutations at these positions did not affect protein production and overall structure of BinB. These cysteine residues are not involved in disulfide bond formation between BinB molecules. Mosquito-larvicidal assays revealed that C67 and C161 are essential for toxicity, whereas C241 is not. Mutations at C67 and C161 resulted in weaker BinA-BinB interaction. The loss of toxicity may be due to the reduction of interactions between BinA and BinB or BinB and its receptor. C67 and C161 could also play a part during conformational changes or internalization of the binary toxin into the target cell.

Keywords

References

  1. Charles, J. F., Nielson-LeRoux, C. and Delecluse, A. (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41, 451-472 https://doi.org/10.1146/annurev.en.41.010196.002315
  2. Nicolas, L., Nielsen-Leroux, C., Charles, J. F. and Delecluse, A. (1993) Respective role of the 42- and 51-kDa components of the Bacillus sphaericus toxin overexpressed in Bacillus thuringiensis. FEMS Microbiol. Lett. 106, 275-280 https://doi.org/10.1111/j.1574-6968.1993.tb05976.x
  3. Baumann, P., Clark, M. A., Baumann, L. and Broadwell, A. H. (1991) Bacillus sphaericus as a mosquito pathogen:properties of the organism and its toxins. Microbiol. Rev.55, 425-436
  4. Baumann, L., Broadwell, A. H. and Baumann, P. (1988)Sequence analysis of the mosquitocidal toxin genes encoding 51.4- and 41.9-kilodalton proteins from Bacillus sphaericus 2362 and 2297. J. Bacteriol. 170, 2045-2050 https://doi.org/10.1128/jb.170.5.2045-2050.1988
  5. Hire, R. S., Hadapad, A. B., Dongre, T. K. and Kumar, V. (2009) Purification and characterization of mosquitocidal Bacillus sphaericus BinA protein. J. Invertebr. Pathol. 101, 106-111 https://doi.org/10.1016/j.jip.2009.03.005
  6. Broadwell, A. H. and Baumann, P. (1987) Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Appl. Environ. Microbiol. 53, 1333-1337
  7. Elangovan, G., Shanmugavelu, M., Rajamohan, F., Dean,D. H. and Jayaraman, K. (2000) Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 276, 1048-1055 https://doi.org/10.1006/bbrc.2000.3575
  8. Oei, C., Hindley, J. and Berry, C. (1992) Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains. J. Gen. Microbiol. 138, 1515-1526 https://doi.org/10.1099/00221287-138-7-1515
  9. Darboux, I., Nielsen-LeRoux, C., Charles, J. F. and Pauron,D. (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem. Mol. Biol. 31, 981-990 https://doi.org/10.1016/S0965-1748(01)00046-7
  10. Silva-Filha, M. H., Nielsen-LeRoux, C. and Charles, J. F.(1999) Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochem. Mol. Biol. 29, 711-721 https://doi.org/10.1016/S0965-1748(99)00047-8
  11. Chiou, C., Davidson, E. W., Thanabalu, T., Porter, A. G. and Allen, J. P. (1999) Crystallization and preliminary X-ray diffraction studies of the 51 kDa protein of the mosquito-larvicidal binary toxin from Bacillus sphaericus. Acta Crystallogr. D. Biol. Crystallogr. 55, 1083-1085 https://doi.org/10.1107/S0907444999003157
  12. Smith, A. W., Camara-Artigas, A. and Allen, J. P. (2004)Crystallization of the mosquito-larvicidal binary toxin produced by Bacillus sphaericus. Acta Crystallogr. D. Biol. Crystallogr. 60, 952-953 https://doi.org/10.1107/S0907444904006535
  13. Smith, A. W., Camara-Artigas, A., Brune, D. C. and Allen, J. P. (2005) Implications of high-molecular-weight oligomers of the binary toxin from Bacillus sphaericus. J. Invertebr. Pathol. 88, 27-33 https://doi.org/10.1016/j.jip.2004.10.005
  14. Berry, C., Hindley, J., Ehrhardt, A. F., Grounds, T., de,Souza, I. and Davidson, E. W. (1993) Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. J. Bacteriol. 175, 510-518 https://doi.org/10.1128/jb.175.2.510-518.1993
  15. Yuan, Z., Rang, C., Maroun, R. C., Juarez-Perez, V., Frutos,R., Pasteur, N., Vendrely, C., Charles, J. F. and Nielsen-Leroux, C. (2001) Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin. Eur. J. Biochem. 268, 2751-2760 https://doi.org/10.1046/j.1432-1327.2001.02176.x
  16. Sanitt, P., Promdonkoy, B. and Boonserm, P. (2008)Targeted mutagenesis at charged residues in Bacillus sphaericus BinA toxin affects mosquito-larvicidal activity. Curr. Microbiol. 57, 230-234 https://doi.org/10.1007/s00284-008-9180-2
  17. Promdonkoy, B., Promdonkoy, P., Wongtawan, B., Boonserm, P. and Panyim, S. (2008) Cys31, Cys47, and Cys195 in BinA are essential for toxicity of a binary toxin from Bacillus sphaericus. Curr. Microbiol. 56, 334-338 https://doi.org/10.1007/s00284-007-9065-9
  18. Clark, M. A. and Baumann, P. (1990) Deletion analysis of the 51-kilodalton protein of the Bacillus sphaericus 2362 binary mosquitocidal toxin: construction of derivatives equivalent to the larva-processed toxin. J. Bacteriol. 172, 6759-6763 https://doi.org/10.1128/jb.172.12.6759-6763.1990
  19. Hogg, P. J. (2003) Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28, 210-214 https://doi.org/10.1016/S0968-0004(03)00057-4
  20. Kadokura, H., Katzen, F. and Beckwith, J. (2003) Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135 https://doi.org/10.1146/annurev.biochem.72.121801.161459
  21. Boonserm, P., Mo, M., Angsuthanasombat, C. and Lescar,J. (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 188, 3391-3401 https://doi.org/10.1128/JB.188.9.3391-3401.2006
  22. Leung, M. Y. and Ho, W. K. (2006) Substitution of serine for non-disulphide-bond-forming cysteine in grass carp(Ctenopharygodon idellus) growth hormone improves in vitro oxidative renaturation. J. Biochem. Mol. Biol. 39, 150-157 https://doi.org/10.5483/BMBRep.2006.39.2.150
  23. Shanmugavelu, M., Rajamohan, F., Kathirvel, M., Elangovan, G., Dean, D. H. and Jayaraman, K. (1998) Functional complementation of nontoxic mutant binary toxins of Bacillus sphaericus 1593M generated by site-directed mutagenesis. Appl. Environ. Microbiol. 64, 756-759
  24. Shanmugavelu, M., Rajamohan, F., Kathirvel, M., Elangovan, G., Dean, D. H. and Jayaraman, K. (1998) Functional complementation of nontoxic mutant binary toxins of Bacillus sphaericus 1593M generated by site-directed mutagenesis. Appl. Environ. Microbiol. 64, 756-759
  25. Schwartz, J. L., Potvin, L., Coux, F., Charles, J. F., Berry, C., Humphreys, M. J., Jones, A. F., Bernhart, I., Dalla, S. M. and Menestrina, G. (2001) Permeabilization of mode lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. J. Membr. Biol. 184, 171-183 https://doi.org/10.1007/s00232-001-0086-1
  26. Cokmus, C., Davidson, E. W. and Cooper, K. (1997)Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells. J. Invertebr. Pathol. 69, 197-204 https://doi.org/10.1006/jipa.1997.4660
  27. Promdonkoy, B., Promdonkoy, P. and Panyim, S. (2008)High-level expression in Escherichia coli, purification and mosquito-larvicidal activity of the binary toxin from Bacillus sphaericus. Curr. Microbiol. 57, 626-630 https://doi.org/10.1007/s00284-008-9254-1
  28. Promdonkoy, B., Promdonkoy, P., Audtho, M., Tanapongpipat, S., Chewawiwat, N., Luxananil, P. and Panyim, S. (2003) Efficient expression of the mosquito larvicidal binary toxin gene from Bacillus sphaericus in Escherichia coli. Curr. Microbiol. 47, 383-387
  29. Thammachat, S., Pathaichindachote, W., Krittanai, C. and Promdonkoy, B. (2008) Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic delta-endotoxin from Bacillus thuringiensis. BMB. Rep. 41, 820-825 https://doi.org/10.5483/BMBRep.2008.41.11.820
  30. Finney, D. (1971) Probit Analysis, Cambridge University Press, London, UK

Cited by

  1. The bacterium, Lysinibacillus sphaericus, as an insect pathogen vol.109, pp.1, 2012, https://doi.org/10.1016/j.jip.2011.11.008
  2. The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus vol.321, pp.2, 2011, https://doi.org/10.1111/j.1574-6968.2011.02325.x
  3. Crystal structure of BinB: A receptor binding component of the binary toxin fromLysinibacillus sphaericus vol.82, pp.10, 2014, https://doi.org/10.1002/prot.24636
  4. Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus vol.44, pp.10, 2011, https://doi.org/10.5483/BMBRep.2011.44.10.674
  5. Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion vol.114, pp.1, 2013, https://doi.org/10.1016/j.jip.2013.05.008
  6. Functional characterization of truncated fragments of Bacillus sphaericus binary toxin BinB vol.106, pp.2, 2011, https://doi.org/10.1016/j.jip.2010.10.004
  7. Structural and Biophysical Characterization of Bacillus thuringiensis Insecticidal Proteins Cry34Ab1 and Cry35Ab1 vol.9, pp.11, 2014, https://doi.org/10.1371/journal.pone.0112555
  8. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: Analysis of complex formation vol.43, pp.11, 2013, https://doi.org/10.1016/j.ibmb.2013.07.011