DOI QR코드

DOI QR Code

The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage

  • Jo, Wol-Soon (Department of Microbiology, Dong-A University College of Medicine) ;
  • Choi, Yoo-Jin (Department of Microbiology, Dong-A University College of Medicine) ;
  • Kim, Hyoun-Ji (Department of Microbiology, Dong-A University College of Medicine) ;
  • Lee, Jae-Yun (Cheong-Won Farm) ;
  • Nam, Byung-Hyouk (Deartment of Microbiology, Pusan National University College of Natural Sciences) ;
  • Lee, Jae-Dong (Deartment of Microbiology, Pusan National University College of Natural Sciences) ;
  • Lee, Sang-Wha (Department of Microbiology, Dong-A University College of Medicine) ;
  • Seo, Su-Yeong (Department of Microbiology, Dong-A University College of Medicine) ;
  • Jeong, Min-Ho (Department of Microbiology, Dong-A University College of Medicine)
  • Published : 2010.03.31

Abstract

The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-$\alpha$ and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators.

Keywords

References

  1. Shiao MS, Wang ZN, Lin LJ, Lien JY, Wang JJ. Profiles of nucleosides and nitrogen bases in Chinese medicinal fungus Cordyceps sinensis and related species. Bot Bull Acad Sin 1994;35:261-7.
  2. Sung JM, Lee HK, Yoo YJ, Choi YS, Kim SH, Kim YO, et al. Classification of Cordyceps species based on protein banding pattern. Kor J Mycol 1998;26:1-7.
  3. Melling J, Belton FC, Kitching D, Stones WR. Production of pure cordycepin (3'-deoxyadenosine) from Cordyceps militaris. J Pharm Pharmacol 1972;24 Suppl:125.
  4. Sun YJ, Lu P, Ling JY, Zhang HX, Chen C, Zhang CK. Nucleoside from Cordyceps kyushuensis and the distribution of two active components in its different parts. Yao Xue Xue Bao 2003;38:690-4.
  5. Yu R, Wang L, Zhang H, Zhou C, Zhao Y. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 2004;75:662-6. https://doi.org/10.1016/j.fitote.2004.06.010
  6. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 2000;59:273-81. https://doi.org/10.1016/S0006-2952(99)00325-1
  7. Nan JX, Park EJ, Yang BK, Song CH, Ko G, Sohn DH. Antifibrotic effect of extracellular biopolymer from submerged mycelial cultures of Cordyceps militaris on liver fibrosis induced by bile duct ligation and scission in rats. Arch Pharm Res 2001;24:327-32. https://doi.org/10.1007/BF02975101
  8. Kim BC, Choi JW, Hong HY, Lee SA, Hong S, Park EH, et al. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages. J Ethnopharmacol 2006;106:364-71. https://doi.org/10.1016/j.jep.2006.01.009
  9. Park YM, Won JH, Kim YH, Choi JW, Park HJ, Lee KT. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J Ethnopharmacol 2005;101:120-8. https://doi.org/10.1016/j.jep.2005.04.003
  10. Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 2005;96:555-61. https://doi.org/10.1016/j.jep.2004.10.009
  11. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol 2005;77:487-95. https://doi.org/10.1189/jlb.0904554
  12. Vernooy JH, Dentener MA, van Suylen RJ, Buurman WA, Wouters EF. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 2002;26:152-9. https://doi.org/10.1165/ajrcmb.26.1.4652
  13. Sakagami T, Vella J, Dixon MF, O'Rourke J, Radcliff F, Sutton P, et al. The endotoxin of Helicobacter pylori is a modulator of host-dependent gastritis. Infect Immun 1997;65:3310-6.
  14. Fichtner-Feigl S, Fuss IJ, Preiss JC, Strober W, Kitani A. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J Clin Invest 2005;115:3057-71. https://doi.org/10.1172/JCI24792
  15. Klotz L, Schmidt M, Giese T, Sastre M, Knolle P, Klockgether T, et al. Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 2005;175:4948-55. https://doi.org/10.4049/jimmunol.175.8.4948
  16. Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 2005;208:228-51. https://doi.org/10.1111/j.0105-2896.2005.00338.x
  17. Sautebin L. Prostaglandins and nitric oxide as molecular targets for anti inflammatory therapy. Fitoterapia 2000;71 Suppl1:S48-57. https://doi.org/10.1016/S0367-326X(00)00181-7
  18. Bosca L, Zeini M, Traves PG, Hortelano S. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 2005;208:249-58. https://doi.org/10.1016/j.tox.2004.11.035
  19. Penglis PS, Cleland LG, Demasi M, Caughey GE, James MJ. Differential regulation of prostaglandin E2 and thromboxane A2 production in human monocytes: implications for the use of cyclooxygenase inhibitors. J Immunol 2000;165:1605-11. https://doi.org/10.4049/jimmunol.165.3.1605
  20. Coker RK, Laurent GJ. Pulmonary fibrosis: cytokines in the balance. Eur Respir J 1998;11:1218-21. https://doi.org/10.1183/09031936.98.11061218
  21. Lee KW, Nam BH, Jo WS, Oh SJ, Kang EY, Cui Y, et al. Collection, identification and hepatic effect of native Codyceps militaris. Kor J Mycol 2006;34:7-14. https://doi.org/10.4489/KJM.2006.34.1.007
  22. de las Heras B, Abad MJ, Silvan AM, Pascual R, Bermejo P, Rodriguez B, et al. Effects of six diterpenes on macrophage eicosanoid biosynthesis. Life Sci 2001;70:269-78. https://doi.org/10.1016/S0024-3205(01)01402-3
  23. Evans CH. Nitric oxide: what role does it play in inflammation and tissue destruction? Agents Actions Suppl 1995;47:107-16.
  24. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA 1994;91:2046-50. https://doi.org/10.1073/pnas.91.6.2146
  25. Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 2006;38:1647-53. https://doi.org/10.1016/j.biocel.2006.03.023
  26. Ando H, Takamura T, Ota T, Nagai Y, Kobayashi K. Cerivastatin improves survival of mice with lipopolysaccharideinduced sepsis. J Pharmacol Exp Ther 2000;294:1043-6.
  27. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996;14:397-440. https://doi.org/10.1146/annurev.immunol.14.1.397
  28. Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 1994;56:559-64. https://doi.org/10.1002/jlb.56.5.559
  29. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995;63:289-302. https://doi.org/10.1016/0304-3959(95)00186-7
  30. Abreu MT, Arditi M. Innate immunity and toll-like receptors: clinical implications of basic science research. J Pediatr 2004;144:421-9. https://doi.org/10.1016/j.jpeds.2004.01.057

Cited by

  1. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin vol.4, pp.1, 2014, https://doi.org/10.1007/s13205-013-0121-9
  2. alleviates non-alcoholic fatty liver disease in ob/ob mice vol.8, pp.2, 2014, https://doi.org/10.4162/nrp.2014.8.2.172
  3. vol.44, pp.4, 2016, https://doi.org/10.5941/MYCO.2016.44.4.291
  4. Polypeptide Treatment and the Underlying Mechanism vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/9419264