Efficacy of Sanitizers Due to the Changes of Contact Time and Temperature

사용시간 및 온도조건 변화에 따른 살균소독제의 유효성

  • Kim, Hyung-Il (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Park, Sung-Kwan (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kwak, In-Shin (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Sung, Jun-Hyun (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lim, Ho-Soo (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Hoo-Jung (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, So-Hee (Food Additives and Packages Division, National Institute of Food and Drug Safety Evaluation)
  • 김형일 (식품의약품안전평가원 첨가물포장과) ;
  • 박성관 (식품의약품안전평가원 첨가물포장과) ;
  • 곽인신 (식품의약품안전평가원 첨가물포장과) ;
  • 성준현 (식품의약품안전평가원 첨가물포장과) ;
  • 임호수 (식품의약품안전평가원 첨가물포장과) ;
  • 김후정 (식품의약품안전평가원 첨가물포장과) ;
  • 김소희 (식품의약품안전평가원 첨가물포장과)
  • Received : 2010.07.15
  • Accepted : 2010.11.10
  • Published : 2010.12.31

Abstract

The bactericidal efficacy of three common sanitizers (100 or 200 ppm of sodium hypochlorite, 100 or 200 ppm of n-alkyl($C_{12}-C_{18}$)benzyldimethyl ehloride, and 50 or 100 ppm of peroxyacetie acid) against Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538 was studied using the suspension test method at various exposure temperatures (4~$40^{\circ}C$) and times(1~60min) under both dirty and clean conditions, respectively. During the suspension tests, sodium hypochlorite (200 ppm) showed higher bactericidal activity than the other sanitizers under clean conditions, with 5 log reductions against E. coli as well as S. aureus in the first 1 min of treatments at $4^{\circ}C$, However, the efficacy of sodium hypochlorite decreased markedly under dirty conditions due to its susceptibility to interfering substances. The efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride increased considerable as the exposure temperature and time increased. The bactericidal efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride might be less effective on low temperature, however, the longer time the sanitizer is in contact, the more effective the sanitization effect. Treatment with peroxyacetic acid (100 ppm) showed at least 5 log reduction against E. coli and S. aureus for 5 min at $4^{\circ}C$ under both clean and dirty conditions. The efficacy of the peroxyacetic acid was not much altered by interfering substances and aflected by changes in temperature or time.

현탁액시험법을 사용하여 일반적으로 사용되는 살균소독제 3종(차아염소산나트륨 100ppm 또는 200ppm, 염화알킬($C_{12}-C_{18}$)벤질디메틸암모늄 100ppm 또는 200ppm 및 과산화초산 50ppm 또는 100ppm)의 Escherichia coli ATCC 10536 및 Staphylococcus aureus ATCC 6538에 대한 살균 소독력을 다양한 온도(4~$40^{\circ}C$)와 시간(1~60분)에서 청정조건 및 오염조건별로 각각 연구하였다. 차아염소산나트륨(200ppm)은 청정조건에서 $4^{\circ}C$, 1분 처리로 E. coli 및 S. aureus를 5 log 이상 감소시켜 3가지 살균소독제 중 가장 효과적인 살균소독제로 나타났다. 그러나 차아염소산나트륨은 간섭물질과의 반응으로 인하여 오염조건에서는 살균소독력이 급속히 감소하였다. 염화알킬($C_{12}-C_{18}$)벤질디메틸암모늄(200ppm)은 사용온도를 높이거나 사용시간을 늘일 경우 살균소독력이 증가하였으며, 저온에서는 살균효과가 낮을 수 있으나 사용시간을 증가시킴으로서 살균소독력을 확보할 수 있었다. 과산화초산(100ppm)은 $4^{\circ}C$, 5분 처리로 E. coli 및 S. aureus이 5 log 이상 감소하였다. 살균소독력은 간섭물질에 의해 크게 변하지 않았으며 온도 및 시간변화에 따른 영향도 크지 않았다.

Keywords

References

  1. 김형일, 이광호, 곽인신, 엄미옥, 전대훈, 성준현, 최정미, 강한샘, 김용수, 강길진: 살균소독력 시험법 확립 및 살균 소독력 평가, 한국식품과학회지, 37(5), 838-843 (2005).
  2. 김형일, 윤혜정, 최현철, 전대훈, 엄미옥, 성준현, 박나영, 원선아, 김남희, 성덕화, 곽효선, 권기성, 이영자: Listeria monocytogenes와 Salmonella spp.에 대한 Sodium hypochlorite 및 Benzalkonium chloride의 유효성 평가, 한국식품위생안전성학회지, 22(2), 132-136 (2007).
  3. 김형일, 전대훈, 강길진, 엄미옥, 성준현, 강한샘, 곽효선, 권기성, 이영자: 유통식품에서 분리한 Staphylococcus aureus 및 Escherichia coli의 살균소독제 감수성, 한국식품과학회지, 39(1), 104-107 (2007).
  4. 김형일, 전대훈, 윤혜정, 최현철, 엄미옥, 성준현, 박나영, 원선아, 김난영, 이영자: 표면시험법을 이용한 식품접촉표면 재질에 따른 살균소독제의 유효성 평가, 한국식품위생안전성학회지, 23(4), 291-296 (2008).
  5. 식품의약품안전청 : 식품첨가물공전. (2009).
  6. European Committee for standardization : Chemical Disinfectants and Antiseptics-Quantitative supension test for the Evaluation of Bacteridal Activity of Chemical Disinfectant and Antiseptics Used in Food Industrial, Domestic, and Institutional Areas-Test Method and Requirement (Phase 2, Step1)-EN 1276. British Standards Institution (1997).
  7. Tomasino, S.:Disinfectants. In AOAC Official Methods of Analysis. 16th Ed. AOAC international, Arlington, VA, USA (1995).
  8. Microbiology laboratory antimicrobial testing methods & procedures. Available from http://www.epa.gov/oppbead1/methods/ atmpa2z.htm#procedures. Accessed Nov. 22 (2009).
  9. Russell, A.D.: Factors influencing the efficacy of antimicrobial agents. In Russell, Hugo & Ayliffe's principles and practice of disinfection preservation & sterilization, 4th Ed. (Fraise, A.P., Lambert, P.A., and Maillard, J-Y. eds.) Blackwell Publishing Ltd., Oxford, pp. 98-127 (2004).
  10. Tuncan, E.U.: Effect of cold temperature on germicidal efficacy of quaternary ammonium compound, iodophor, and chlorine on Listeria. J. Food Prot. 56(12), 1029-1033 (1993).
  11. Best, M., Kennedt, M.E., and Coates, F.: Efficacy of a variety of disinfectants against Listeria spp. Appl. Environ. Microbiol. 56(2), 377-380 (1990).
  12. Sagripanti, J.L., Eklund, C.A., Trost, P.A., Jinneman, K.C., Abeyta, C.Jr., Kaysner, C.A., and Hill, W.E.: Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicide. AJIC 25(4), 335-339 (1997).
  13. Ukuku, D.O.: Effect of sanitizing treatments on removal of bacteria from cantaloupe surface, and re-contamination with Salmonella. Food Microbiol. 23, 289-293 (2006). https://doi.org/10.1016/j.fm.2005.04.002
  14. Sharma, M. and Beuchat, L.R.: Sensitivity of Escherichia coli O157:H7 to commercially available alkaline cleaners and subsequent resistance to heat and sanitizers. Appl. Environ. Microbiol. 70(3), 1795-1803 (2004). https://doi.org/10.1128/AEM.70.3.1795-1803.2004
  15. Liu, C., Duan, J., and Su. Y.C.: Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces. Int. J. Food Microbiol. 106, 248-253 (2006). https://doi.org/10.1016/j.ijfoodmicro.2005.06.020
  16. Kim, H.K., Ryu, J.H., and Beuchat, L.R.: Survival of Enterobacter sakazakii on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination. Int. J. Food Microbiol. 111, 134-143 (2006). https://doi.org/10.1016/j.ijfoodmicro.2006.05.021
  17. Lopes, J.A.: Susceptibility of antibiotic-resistant and antibiotic- sensitive foodborne pathogens to acid anionic sanitizers. J. Food Prot. 61(10), 1390-1395 (1998).
  18. Langsrud, S., Sidhu, M.S., Heir, E., and Holck, A.L.: Bacterial disinfectant resistance-a challenge for the food industry. Int. Biodeter. Biodegr. 51, 283-290 (2003). https://doi.org/10.1016/S0964-8305(03)00039-8
  19. Soumet, C., Ragimbeau, C., and Maris, P.: Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett. Appl. Microbiol. 41, 291-296 (2005). https://doi.org/10.1111/j.1472-765X.2005.01763.x
  20. Gradel, K.O., Randall, L., Sayers, A.R., and Davies, R.H.: Possible association between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet. Microbiol. 107, 127-138 (2005). https://doi.org/10.1016/j.vetmic.2005.01.013
  21. Bloomfield, S.F. and Looney, E.: Evaluation of the repeatability and reproducibility of European suspension test methods for antimicrobial activity of disinfectants and antiseptics. J. Appl. Bacteriol. 73, 87-93 (1992). https://doi.org/10.1111/j.1365-2672.1992.tb04975.x
  22. Langsrud, S. and Sundheim, G.: Factore influencing a suspension test method for antimicrobial activity of disinfectants. J. Appl. Microbiol. 85, 1006-1012 (1998). https://doi.org/10.1111/j.1365-2672.1998.tb05265.x
  23. Jeffrey, D.J.: European disinfectant testing-Collaborative trials. Int. Biodeter. Biodegr. 36, 367-374 (1995). https://doi.org/10.1016/0964-8305(95)00073-9
  24. Fuster-Valls, N., Hernandez-Herrero, M., Marin-de-Mateo, M., and Rodriguez-Jerez, J.J.: Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control, 19, 308-314 (2008). https://doi.org/10.1016/j.foodcont.2007.04.013
  25. Oulahal, N., Brice, W., Martial, A., and Degraeve, P.: Quantitative analysis of survival of Staphylococcus aureus or Listeria innocua on two types of surfaces: Polypropylene and stainless steel in contact with three different dairy products. Food Control, 19, 178-185 (2008). https://doi.org/10.1016/j.foodcont.2007.03.006
  26. Klingeren, B.V. : Disinfectant testing on surfaces. J. Hosp. Infect. 30(Supplement), 397-408 (1995). https://doi.org/10.1016/0195-6701(95)90044-6
  27. Tomasino, S.F. and Hamilton, M.A.: Comparative of two quantitative test methods for determination the efficacy of liquid sporicides and sterilants on a hard surface: A precollaborative study. J. AOAC Int. 90(2), 456-464 (2007).
  28. 식품의약품안전청: 식품첨가물 생산실적. Available from http://fa.kfda.go.kr/ Accessed Nov. 22 (2009).
  29. 하상도: 식품가공공장의 살균소독제 안전관리에 대한 연구. 식품의약품안전청, pp. 46-49 (2004).
  30. Lambert, P.A.: Sterilization. In Russell, Hugo & Ayliffe's principles and practice of disinfection preservation & sterilization, 4th Ed. (Fraise, A.P., Lambert, P.A., and Maillard, J-Y. eds.) Blackwell Publishing Ltd., Oxford, pp. 384-435 (2004).
  31. Sisti, M., Albano, A., and Brandi, G.: Bactericidal effect of chlorine on motile Aeromonas spp. in drinking water supplies and influence of temperature on disinfection efficacy. Lett. Appl. Microbiol., 26, 347-351 (1998). https://doi.org/10.1046/j.1472-765X.1998.00346.x
  32. Vijayakumar, C., Wolf-Hall, C.: Minimum bacteriostatic and bactericidal concentrations of household sanitizers for Escherichia coli strains in tryptic soy broth. Food Microbiol. 19, 383- 388 (2002). https://doi.org/10.1006/fmic.2002.0459
  33. Bloomfield, S.F.: Chlorine and iodine formulations. In Handbook of disinfectants and antiseptics, 1st Ed. (Ascenzi, J.M. ed.) Dekker, Inc. New York, pp. 133-158 (1996).
  34. Banner, M.J.: The selection of disinfectants for use in food hygine. In Handbook of biocide and preservative use, 1st Ed. (Rossmoore, H.W. ed) Blackie academic & professional, Glasgow, pp. 315 -333 (1995).
  35. Villanueva, C.M., Cantor, K.P., Cordier, S., Jaakkola, J.J., King, W.D., Lynch, C.F., Porru, S., and Kogevinas, M.: Disinfection by products and bladder cancer:A polled analysis. Epidemiology 15(3), 357-367 (2004). https://doi.org/10.1097/01.ede.0000121380.02594.fc
  36. Sapers, G.M., Miller, R.L., Pilizota, V., and Mattrazzo, A.M.: Antimicrobial treatments for minimally processed cantaloupe melon. J. Food Sci. 66(2), 345-349 (2001). https://doi.org/10.1111/j.1365-2621.2001.tb11344.x
  37. Singh, N., Singh, R.K., Bhunia, A.K., and Stroshine, R.L.: Effect of inoculation and washing methods on the efficacy of different sanitizers against Escherichia coli O157:H7 on lettuce. Food Microbiol. 19, 183-193 (2002). https://doi.org/10.1006/fmic.2001.0471
  38. Silveira, A.C., Conesa, A., Aguayo, E., and Artes, F.: Alternative sanitizers to chlorine for use on fresh-cut "Galia" (Cucumis melo var. catalupensis) melon. J. Food Sci. 73(9), M405-M411 (2008). https://doi.org/10.1111/j.1750-3841.2008.00939.x
  39. Hilgren, J.D. and Salverda, J.A.: Antimicrobial efficacy of peroxyacetic/octanoic acid mixture in fresh-cut-vagatable process waters. J. Food Sci. 65(8), 1376-1379 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb10615.x
  40. Martines-Sanchez, A., Allende, A., Bennett, R.N., Ferreres, F., and Gil, M.I.: Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol. Technol. 42, 86-97 (2006). https://doi.org/10.1016/j.postharvbio.2006.05.010
  41. Rodgers, S.L., Cash, J.N., Siddiq, M., and Ryser, E.T.: A comparision of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apple, lettuce, strawberries, and cantaloupe. J. Food Prot. 67(4), 721-731 (2004).
  42. 40 CFR §180.940. Tolerance exemptions for active and inert ingredients for use in antimicrobial formulations (Food contact surface sanitizing solutions). In Code of Federal Regulations. U.S. Government printing office, Washington, DC, pp. 551-557 (2005).
  43. Banner, M.J.: The selection of disinfectants for use in food hygine. In Handbook of biocide and preservative use, 1st Ed. (Rossmoore, H.W. ed) Blackie academic & professional, Glasgow, pp. 315 -333 (1995).
  44. WHO/EMC/ZDI/98/6 Guidelines for the Surveillance and Control of Anthrax in Humans and Animals. Available from http:// www.who.int/csr/resources/publications/anthrax/whoemczdi- 986text.pdf. Accessed Aug. 21 (2009).