Antioxidant Properties of Cultured Wild Ginseng Roots Extracts

산삼배양근 추출물의 항산화 특성

  • Kim, Jae-Won (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin-Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • No, Hong-Kyoon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu)
  • 김재원 (대구가톨릭대학교 식품가공학) ;
  • 이신호 (대구가톨릭대학교 식품가공학) ;
  • 노홍균 (대구가톨릭대학교 식품가공학) ;
  • 홍주헌 (대구가톨릭대학교 식품가공학) ;
  • 윤광섭 (대구가톨릭대학교 식품가공학)
  • Received : 2010.07.12
  • Accepted : 2010.10.29
  • Published : 2010.12.30

Abstract

We obtained hot-water extracts (HWE) and 70% (v/v) ethanol extracts (EE) from cultured wild ginseng roots (CWGR) and determined the saponin and total polyphenol contents, and antioxidant activities. The yields of freeze-dried powder from the HWE and EE were 27.86% and 18.33% (both w/w), respectively. The total polyphenol content of the EE (22.63 mg/g) was higher than that of the HWE (17.90 mg/g). Ginsenoside-Rb1 and -Rg1 contents of hot-air-dried CWGR were 17.90 mg/g and 22.63 mg/g, respectively. The electron-donating ability of HWE and EE were 2.82-60.58% and 3.88?70.88%, respectively, and the reducing powers ($OD_{700}$) were 0.02-0.17 and 0.07-1.90, respectively, at concentrations of 1-20 mg/mL. Thus, the HWE reducing power was markedly lower than that of the EE, but the SOD-like activity of the EE was significantly higher than that of the HWE. The nitrite-scavenging activities of HWE and EE were 9.25-19.18% and 11.94-53.49%, respectively, at concentrations of 1-20 mg/mL. Additionally, the TBARS (Thiobarbituric acid reactive substances, % value) of the EE (1-20 mg/mL) was 9.18-66.59%, thus 1.9-2.8-fold greater than that of the HWE (4.74-24.88%). In conclusion, we provide experimental evidence that extracts of CWGR may be natural antioxidants.

산삼배양근을 식품소재 첨가물로의 이용성을 알아보고자 열수 및 70% 에탄올 추출물에 대한 항산화 활성을 측정하였다. 열수추출물의 수율은 건물당 27.86%이었으며, 70% 에탄올추출물은 18.33%이었다. 총 폴리페놀 함량은 열수 및 70% 에탄올 추출물에서 각각 17.90 mg/g 및 22.63 mg/g 이었다. Ginsenoside Rb1 및 Rg1의 함량은 각각 1.45 mg/g 및 0.96 mg/g 이었다. 1~20 mg/mL 농도에서 물추출물 및 70% 에탄올 추출물의 전자공여능은 각각 2.82~60.58% 및 3.88~70.88% 이었으며, 환원력에서는 70% 에탄올 추출물이 0.07~1.90이었고 물 추출물은 대체적으로 낮았다. SOD 유사활성은 물 추출물은 큰 차이가 없었으나 70%에탄올 추출물에서는 농도가 증가함에 따라 유의적으로 증가하였다. 아질산염 소거능은 SOD 유사활성의 결과와 유사하였다. 지질산패 억제능은 70% 에탄올 추출물은 9.18~66.59%로 물 추출물의 4.74~24.88%에 비하여 1.9~2.8 배 높은 활성을 나타내었다. 이상의 결과로 볼 때 산삼배양근 추출물은 70% 에탄올 추출물의 항산화성이 우수하여 산화방지제 및 기능성 증진용 소재 활용에 효과가 있을 것으로 판단된다.

Keywords

References

  1. Halliwell B. (2006) Reactive oxygen species and the central nervous system. J. Neurochem., 59, 1609-1623
  2. Zhang S, Chen R, Wang C. (2006) Ginsenoside extraction from Panx quinquefolium L. (American ginseng) root by using ultrahigh pressure. J. Pharmaceut. Biomed. Anal., 41, 57-63 https://doi.org/10.1016/j.jpba.2005.10.043
  3. Song SW, Yang DC, Choung SY. (2005) Acute oral toxicity of adventitous roots extract derived from wild ginseng in beagle dogs. J. Toxicol. Pub. Health, 21, 51-55
  4. Son SH, Choi SM, Hyung SJ, Yun S, Choi MS, Shin EM, Hong YP. (1999) Induction and culture of mountain ginseng adventitious roots and AFLP analysis for identifying mountain ginseng. Biotechnol. Bioprocess Eng., 4, 119-123 https://doi.org/10.1007/BF02932381
  5. Lee TK, Johnke RK, Allison RR, O'Brien KF, Dobbs LJ. (2005) Radioprotective potential of ginseng. Mutagenesis, 20, 237-243 https://doi.org/10.1093/mutage/gei041
  6. Dewanto V, Wu X, Adom KK, Liu RH. (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50, 3010-3014 https://doi.org/10.1021/jf0115589
  7. Yu KW. (2000) Production of the useful metabolites through bioreactor culture of Korean ginseng (Panax ginseng C.A Meyer), Major in Hort. Sci. Depart. Hort. Grad. School, Chungbuk National University.
  8. Blois MS. (1958) Antioxidant determination by the use of a stable free radical. Nature, 26, 1199-1200
  9. Saeedeh AD, Asna U. (2007) Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem., 102, 1233-1240 https://doi.org/10.1016/j.foodchem.2006.07.013
  10. Marklund S, Marklund G. (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biol. Chem., 47, 468-474
  11. Kato H, Lee I.E, Chuyen NV, Kim SB, Hayase F. (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem., 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  12. Buege JA, Aust SD. (1978) Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  13. Lee SE, Lee SW, Bang JK, Yu YJ, Seong NS. (2004) Antioxidant activities of leaf, stem and root of panax ginseng C. A. meyer. Korean J. Med. Crop. Sci., 12, 237-242
  14. Park JC, Cha JY, Lee CH, Doh ES, Kang IH, Cho YS. (2009) Biological activities and chemical characteristics of Monascus fermented korean red ginseng. J. Life Sci., 19, 1553-1561 https://doi.org/10.5352/JLS.2009.19.11.1553
  15. Lee BY, Hwang JB. (2000) Physicochemical characteristics of Agastache rugosa O. Kuntze extracts by extraction conditions. Korean J. Food Sci. Technol., 32, 1-8
  16. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. (2005) Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J. Food Sci. Technol., 37, 233-240
  17. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem., 44, 37-41 https://doi.org/10.1021/jf950190a
  18. Jang HD, Kim HJ, Min BJ, Cho JH, Chen YG, Yoo JS, Lee JJ, Han MH. (2007) Effects of fermented wild ginseng culture by products on growth performance, blood characteristics, meat quality and ginsenoside concentration of meat in finishing pigs. J. Anim. Sci. Technol., 49, 329-340 https://doi.org/10.5187/JAST.2007.49.3.329
  19. Anoja S, Attele AW, Yuan CS. (1999) Ginseng pharmacology. Biochem. Pharmacol., 58, 1685-1693 https://doi.org/10.1016/S0006-2952(99)00212-9
  20. Kim KT, Yoo KM, Lee JW, Eom SH, Hwang IK, Lee CY. (2007) Protective effect of steamed American genseng (Panax quinquefolius L.) in V79-4 cells induced by oxidative stress. J. Ethnopharmacol., 111, 443-450 https://doi.org/10.1016/j.jep.2007.01.004
  21. Doh ES, Chang JP, Lee KH, Seong NS. (2010) Cinsenoside change and antioxidation activity of fermented ginseng. Korean J. Med. Crop Sci., 18, 255-265
  22. Chung JH, Ho JS, Moon CK. (1990) Direct interaction of streptozotocin with TBA(thiobarbituric acid) in lipid peroxidation analysis. Korean J. Food Hyg., 5, 237-242
  23. Osawa T. (1994) Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p. 241-251
  24. Kitani K, Minami C, Amamoto T, Kanai S, Ivy GO, Carrillo MC. (2002) Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann. NY Acad. Sci., 959, 295-307 https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  25. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. (2004) Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol., 36, 333-338
  26. Na GM, Han HS, Ye SH, Kim HK (2004) Physiological activity of medicinal plant extracts. Korean J. Food Preserv., 11, 388-393
  27. Torel J, Gillard J, Gillard P. (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem., 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0