DOI QR코드

DOI QR Code

Electrodeposition of Cu(InxGa(1-x))Se2 Thin Film

CIGS 박막의 전착에 관한 연구

  • Lee, Sang-Min (Department of Advanced Materials Chemistry, College of Science and Technology, Korea University) ;
  • Kim, Young-Ho (Dasstech Co., Ltd.) ;
  • Oh, Mi-Kyung (Dasstech Co., Ltd.) ;
  • Hong, Suk-In (Department of Chemical Engineering, Korea University) ;
  • Ko, Hang-Ju (Korea Potonics Technology Institute) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, College of Science and Technology, Korea University)
  • 이상민 (고려대학교 자연과학대학 신소재화학과) ;
  • 김영호 ((주) 다쓰테크) ;
  • 오미경 ((주) 다쓰테크) ;
  • 홍석인 (고려대학교 공과대학 화공생명공학과) ;
  • 고항주 (한국광기술원) ;
  • 이치우 (고려대학교 자연과학대학 신소재화학과)
  • Received : 2010.01.29
  • Accepted : 2010.02.17
  • Published : 2010.05.31

Abstract

The chalcopyrite $Cu(In_xGa_{(1-x)})Se_2$ (CIGS) is considered to be one of the effective light-absorbing materials for thin film photovoltaic solar cells. We describe the electrodeposition of CIGS thin films in ambient laboratory conditions, and suggest the electrochemical conditions to prepare stoichiometric CIGS thin films of Ga/(In + Ga) = 0.3. In acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$ and $Se^{4+}$ ions, the CIGS films of different Cu/In/Ga/Se chemical compositions were electrodeposited onto Mo/Glass substrate. The structure, morphology and chemical composition of electrodeposited CIGS films were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDS), respectively.

Cu(In, Ga)$Se_2$ (CIGS) 박막은 다원화합물이기 때문에 제조공정이 매우 까다롭다. 진공장치를 사용하는 제조 방법으로 동시증착법, 스퍼터링법 +셀렌화가 있고, 비진공 제조 방법으로 전기화학적인 전착법이 있다. 각 방법에 있어서도 출발 물질의 종류에 따라 다양한 제조 방법이 동원 될 수 있다. 진공증착에 의한 방법은 고품질의 박막을 얻는데 사용 되고 있으나 고가의 진공장비가 사용되므로 대면적화에 따른 제조비용 측면에서 문제가 있다. 이에 비하여, 전착법은 간단하면서도 저가로 대면적화를 이룰 수 있다는 장점 때문에, 많은 관심이 기울여지고 있다. 본 연구에서는 Mo/Glass전극위에 Ga/(In + Ga) = 0.3의 성분비를 만족시키는 CIGS 박막을 전기화학적으로 제조하기 위하여, $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$, $Se^{4+}$ 4성분을 모두 포함하는 전해질 수용액 내에서, 4성분의 이온들이 동시에 환원되는 전위를 조절하여 CIGS 박막을 전착 하였다. SEM을 이용하여 얻어진 CIGS 박막의 전착된 시료의 표면을 관찰하였고, EDS로 그 조성을 분석하였다. 또한, XRD를 이용하여 전착시료의 열처리 전후의 결정성변화를 조사하였다.

Keywords

References

  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, ‘Solar Cell Efficiency Tables (Version 33)’ Prog. Photovolt:Res. Appl., 17, 85 (2009). https://doi.org/10.1002/pip.880
  2. H. W. Schock and R. Noufi, ‘CIGS-based Solar Cells for the Next Millennium’ Prog. Photovolt: Res. Appl., 8, 151 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<151::AID-PIP302>3.0.CO;2-Q
  3. J. F. Guillemoles, L. Kronik, and U. Rau, ‘Stability Issues of Cu(In,Ga)Se2-Based Solar Cells’ J. Phys. Chem. B, 104, 4849 (2000). https://doi.org/10.1021/jp993143k
  4. R. N. Bhattacharya and K. Rajeshwar, ‘Electrodeposition of CuInX (Χ = Se, Te) Thin Films’ Sol. Cells, 16, 237 (1986). https://doi.org/10.1016/0379-6787(86)90087-6
  5. N. B. Chaure, J. Young, A. P. Samantilleke, and I. M. Dharmadasa, ‘Electrodeposition of p-.i-.n type $CuInSe_2$ multilayers for photovoltaic applications’ Sol. Energy Mater. Sol. Cells, 81, 125 (2004). https://doi.org/10.1016/j.solmat.2003.10.001
  6. T. L. de Silver, W. A. A. Priyantha, J. Jayanetti, B. D. Chithrani, W. Siripala, K. Blake, and I. M. Dharmadasa, ‘Electrodeposition and characterisation of $CuInSe_2$ for applications in thin film solar cells’ Thin Solid Films, 382, 158 (2001). https://doi.org/10.1016/S0040-6090(00)01185-8
  7. M. A. Contreras and R. Noufi, ‘Chalcopyrite Cu(In, Ga)$Se_2$ and defect-chalcopyrite $Cu(In,Ga)_3Se_5$ materials in photovoltaic P-N junctions’ J. of Cryst. Growth, 174, 283 (1997). https://doi.org/10.1016/S0022-0248(96)01160-8
  8. N. Kavcar, M. J. Carter, and R. Hill, ‘Characterization of CuInSe2 thin films produced by thermal annealing of stacked elemental layers’ Sol. Energy Mater. Sol. Cells, 27, 13 (1992). https://doi.org/10.1016/0927-0248(92)90039-R
  9. 윤경훈, 윤재호, 안세진, 이정철, 송진수, 김석기, “CIS 화합물 박막 태양전지 기술개발” 한국에너지기술 연구원, p. 112, 2006. 12. 31.
  10. I. Repins, M. A. Conteras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, ‘19.9%-efficient $ZnO/CdS/CuInGaSe_2$ Solar Cell with 81.2% Fill Factor’ Prog. Photovol: Res. Appl., 16, 235 (2008). https://doi.org/10.1002/pip.822
  11. Y. Sudo, S. Endo, and T. Irie, ‘Preparation and characterization of Electrodeposited $CuInSe_2$ Thin films’ Jpn. J Appl. Phys., 32, 1562 (1993). https://doi.org/10.1143/JJAP.32.1562
  12. Y. B. He, T. Kramer, A. Polity, R. Gregor, W. Kriegseis, I. Osterreicher, D. Hasselkamp, and B. K. Meyer, ‘Preparation and characterization of highly (1 1 2)-oriented $CuInS_2$ films deposited by a one-stage RF reactive sputtering process’ Thin Solid Films, 431-432, 231 (2003). https://doi.org/10.1016/S0040-6090(03)00164-0
  13. T. Nakada, K. Migita, S. Niki, and A. Kunioka, ‘Microstructural Characterization for Sputter-Deposited $CuInSe_2$ Films and Photovoltaic Devices’ Jpn. J. Appl. Phys., 34, 4715 (1995). https://doi.org/10.1143/JJAP.34.4715
  14. R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason, and R. N. Noufi, ‘12.3% Efficient $CI_{(1−x)}G_xS_2$-Based Device from Electrodeposited Precursor’ J. Electrochem. Soc., 144, 1376 (1997). https://doi.org/10.1149/1.1837599
  15. R. N. Bhattacharya, W. Batchetor, H. Wiesner, F. Hasoon, J. E. Granata, K. Ramanathan, I. Alieman, L. Keane, A. Mason, R. J. Matson, and R. N. Noufi, ‘14.1% $CI_{1−x} G_xS_2$-Based Photovoltaic Cells from Electrodeposited Precursors’ J. Electrochem. Soc., 145, 3435, (1998). https://doi.org/10.1149/1.1838823
  16. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, and Y. Liu, ‘Cyclic voltammetry study of electrodeposition of $Cu(In,Ga)Se_2$ thin films’ Electrochim. Acta., 54, 3004 (2009). https://doi.org/10.1016/j.electacta.2008.12.016
  17. F. Long, W. Wang, J. Du, and Z. Zou, ‘CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution’ J. of Phys., 152, 012074 (2009).
  18. D. Guimard, N. Bodereau, J. Kurdi, J. F. Guillemoles, D. Lincot, P. P. Grand, M. BenFarrah, S. Taunier, O. Kerrec, and P. Mogensen, ‘Efficient $Cu(In,Ga)Se_2$ Based Solar Cells Prepared by Electrodeposition’ 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2PD3-58, May 11-18, 2003.
  19. F. Kang, J. Ao, G. Sun, Q. He, and Y. Sun, ‘Properties of $CI_xG_{(1−x)}Se_2$ thin films grown from electrodeposited precursors with different levels of selenium content’ Curr. Appl. Phys., 10, 886 (2010). https://doi.org/10.1016/j.cap.2009.10.015
  20. R. N. Bhattacharya, W. Batchelor, J. E. Grannata, F. Hasson, H. Wiesner,s K. Ramanathan, J. Keane, and R. N. Noufi, ‘$CI_{(1−x)}G_xS_2$-based photovoltaic cells from electrodeposited and chemical bath deposited precursors’ Sol. Energy Mater. Sol. Cells, 55, 83 (1998). https://doi.org/10.1016/S0927-0248(98)00049-X
  21. A. Kampmann, V. Sittinger, J. Rechid, and R. Reineke-Koch, ‘Large area electrodeposition of $Cu(In,Ga)Se_2$’ Thin Solid Films, 361-362, 309-313 (2000). https://doi.org/10.1016/S0040-6090(99)00863-9
  22. M. A. Contreras, M. J. Romero, and R. Noufi, ‘Characterization of $Cu(In,Ga)Se_2$ materials used in record performance solar cells’ Thin Solid Films, 511-512, 51 (2006). https://doi.org/10.1016/j.tsf.2005.11.097
  23. K. Ramanathan, M. A. Contreras, C .L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, ‘Properties of 19.2% Efficiency $ZnO/CdS/CuInGaSe_2$ Thin-film Solar Cells’ Prog. Photovolt: Res., 11, 225 (2003). https://doi.org/10.1002/pip.494

Cited by

  1. CIGS Thin Film Solar Cells by Electrodeposition vol.14, pp.2, 2011, https://doi.org/10.5229/JKES.2011.14.2.061
  2. Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells vol.85, pp.11, 2011, https://doi.org/10.1016/j.solener.2011.08.003
  3. Structural and electrical properties of radio frequency magnetron sputtered Cu(InxGa1−x)Se2 thin films with additional post-heat treatment vol.547, 2013, https://doi.org/10.1016/j.tsf.2013.04.108
  4. Reversible Redox Transition and Pseudocapacitance of Molybdenum/Surface Molybdenum Oxides vol.160, pp.1, 2013, https://doi.org/10.1149/2.047301jes