DOI QR코드

DOI QR Code

Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.02.14
  • Accepted : 2010.04.13
  • Published : 2010.06.20

Abstract

In order to effective degradation of organic dye both under visible light or ultrasonic irradiation, the MWCNTs (multiwalled carbon nanotube) deposited with Fe and $TiO_2$ were prepared by a modified sol-gel method. The Fe/$TiO_2$-MWCNT catalyst was characterized by surface area of BET, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) and ultraviolet-visible (UV-vis) spectroscopy. The low intensity visible light and low power ultrasound was as an irradiation source and the methylene blue (MB) was choose as the model organic dye. Then degradation experiments were carried out in present of undoped $TiO_2$, Fe/$TiO_2$ and Fe/$TiO_2$-MWCNT catalysts. Through the degradation of MB solution, the results showed the feasible and potential use of Fe/$TiO_2$-MWCNT catalyst under visible light and ultrasonic irradiation due to the enhanced formation of reactive radicals as well as the possible visible light and the increase of ultrasound-induced active surface area of the catalyst. After addition of $H_2O_2$, the MB degradation rates have been accelerated, especially with Fe/$TiO_2$-MWCNT catalyst, in case of that the photo-Fenton reaction occurred. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of Fe/$TiO_2$-MWCNT catalyst.

Keywords

References

  1. Berlan, J.; Trabelsi, F.; Delmas, H.; Wilhelm, A. M.; Petrignani, J. F. Ultrason. Sonochem. 1994, 1, 97. https://doi.org/10.1016/1350-4177(94)90005-1
  2. Gogate, P. R. Adv. Environ. Res. 2002, 6, 335. https://doi.org/10.1016/S1093-0191(01)00067-3
  3. Suslick, K. S. Scientific American 1989, 260, 80.
  4. Makino, K.; Mossoba, M. M.; Riesz, P. J. Phys. Chem. 1983, 87, 1369. https://doi.org/10.1021/j100231a020
  5. Serpone, N.; Colarusso, P. Res. Chem. Intermed. 1994, 20, 635. https://doi.org/10.1163/156856794X00261
  6. Riesz, P.; Berdahl, D.; Christman, C. L. Environ. Health Perspect. 1985, 64, 233. https://doi.org/10.2307/3430013
  7. Silva, C. G.; Faria, J. L. J. Photochem. Photobiol. A 2003, 155, 133. https://doi.org/10.1016/S1010-6030(02)00374-X
  8. Han, W.; Zhu, W.; Zhang, P.; Zhang, Y.; Li, L. Catal. Today 2004, 90, 319. https://doi.org/10.1016/j.cattod.2004.04.041
  9. Han, W.; Zhang, P.; Zhu, W.; Yin, J.; Li, L. Water. Res. 2004, 38, 4197. https://doi.org/10.1016/j.watres.2004.07.019
  10. He, D. M.; Yang, L. X.; Kuang, S. Y.; Cai, Q. Y. Electrochem. Communications 2007, 9, 2467. https://doi.org/10.1016/j.elecom.2007.07.025
  11. Zhang, X. W.; Zhou, M. H.; Lei, L. C. Mater. Chem. Phys. 2005, 91, 73. https://doi.org/10.1016/j.matchemphys.2004.10.058
  12. Feng, J.; Wong, R. S. K.; Hu, X.; Yue, P. L. Catal. Today 2004, 98, 441. https://doi.org/10.1016/j.cattod.2004.08.007
  13. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B: Environ. 2005, 56, 305. https://doi.org/10.1016/j.apcatb.2004.09.018
  14. Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Appl. Catal. A: General 2004, 265, 115. https://doi.org/10.1016/j.apcata.2004.01.007
  15. Tryba, B. J. Hazard. Mater. 2008, 151, 623. https://doi.org/10.1016/j.jhazmat.2007.06.034
  16. Yang, X.; Cao, C.; Hohn, K.; Erickson, L.; Maghirang, R.; Klabunde, K. J. Catal. 2007, 252, 296. https://doi.org/10.1016/j.jcat.2007.09.014
  17. Teoh, W. Y.; Amal, R.; Mädler, L.; Pratsinis, S. E. Catal. Today 2007, 120, 203. https://doi.org/10.1016/j.cattod.2006.07.049
  18. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Mole. Catal. A: Chem. 2005, 235, 194. https://doi.org/10.1016/j.molcata.2005.02.027
  19. Tuziuti, T.; Yasui, K.; Iida, Y.; Taoda, H.; Koda, S. Ultrason. 2004, 42, 597. https://doi.org/10.1016/j.ultras.2004.01.082
  20. Wang, J.; Lv, Y. H.; Zhang, Z. H.; Deng, Y. Q.; Zhang, L. Q.; Liu, B.; Xu, R.; Zhang, X. D. J. Haz. Mater. 2009, 170, b398. https://doi.org/10.1016/j.jhazmat.2009.04.083
  21. Wang, J.; Sun, W.; Zhang, Z. H.; Jiang, Z.; Wang, X. F.; Xu, R.; Li, R. H.; Zhang, X. D. J. Col. Inter. Sci. 2008, 320, 202. https://doi.org/10.1016/j.jcis.2007.12.013
  22. Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos, D. Appl. Catal. B: Environ. 2007, 74, 63. https://doi.org/10.1016/j.apcatb.2007.01.013
  23. Yano, J.; Matsuura, J.; Ohura, H.; Yamasaki, S. Ultrason. Sonochem. 2005, 12, 197. https://doi.org/10.1016/j.ultsonch.2003.12.001
  24. Oh, W. C.; Zhang, F. J.; Chen, M. L.; Lee, Y. M.; Ko, W. B. J. Ind. Eng. Chem. 2009, 15, 190. https://doi.org/10.1021/ie50158a034
  25. Zhang, K.; Oh, W. C. J. Kor. Cer. Soc. 2009, 46, 561. https://doi.org/10.4191/KCERS.2009.46.6.561
  26. Oh, W. C.; Chen, M. L. Bull. Kor. Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  27. Wang, J.; Ma, T.; Zhang, Z. H.; Zhang, X. D.; Jiang, Y. F.; Pan, Z. J.; Wen, F. Y.; Kang, P. L.; Zhang, P. Desalination 2006, 195, 294. https://doi.org/10.1016/j.desal.2005.12.007
  28. Hung, W. C.; Chen, Y. C.; Chu, H.; Tseng, T. K. Appl. Sur. Sci. 2008, 255, 2205. https://doi.org/10.1016/j.apsusc.2008.07.079
  29. Chen, L. C.; Ho, Y. C.; Guo, W. S.; Huang, C. M.; Pan, T. C.; Electrochimica. Acta 2009, 54, 3884. https://doi.org/10.1016/j.electacta.2009.02.001
  30. Zhang, K.; Meng, Z. D.; Ko, W. B.; Oh, W. C. Anal. Sci. Technol. 2009, 22, 254.
  31. Wu, K. Q.; Xie, Y. D.; Zhao, J. C.; Hidaka, H. S. J. Mol. Catal. A 1999, 144, 77. https://doi.org/10.1016/S1381-1169(98)00354-9
  32. Rincon, A. G.; Pulgarin, C. Appl. Catal. B 2006, 63, 222. https://doi.org/10.1016/j.apcatb.2005.10.009
  33. Zhang, K.; Oh, W. C. Kor. J. Mater. Res. 2009, 19, 481. https://doi.org/10.3740/MRSK.2009.19.9.481
  34. Tryba, B.; Morawski, A. W.; Inagaki, M.; Toyoda, M. Chemosphere 2006, 64, 1225. https://doi.org/10.1016/j.chemosphere.2005.11.035
  35. Mrowetz, M.; Pirola, C.; Selli, E. Ultrason. Sonochem. 2003, 10, 247. https://doi.org/10.1016/S1350-4177(03)00090-7
  36. Shimizu, N.; Ogino, C.; Dadjour, M. F.; Murata, T. Ultrason. Sonochem. 2007, 14, 184. https://doi.org/10.1016/j.ultsonch.2006.04.002
  37. Tu, Y. F.; Huang, S. Y.; Sang, J. P.; Zou, X. W. Mater. Res. Bull. 2010, 45, 224. https://doi.org/10.1016/j.materresbull.2009.08.020

Cited by

  1. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water vol.14, pp.4, 2012, https://doi.org/10.1007/s11051-012-0776-x
  2. Reusable Photocatalysts for Dye Degradation vol.2013, pp.1687-529X, 2013, https://doi.org/10.1155/2013/752605
  3. A facile in situ fabrication and visible-light-response photocatalytic properties of porous carbon sphere/InOOH nanocomposites vol.16, pp.3, 2014, https://doi.org/10.1007/s11051-014-2295-4
  4. Hybrid Nanomaterials Synthesized with a Microwave-assisted Method vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.162
  5. Highly Efficient Photodegradation of Organic Pollutants Assisted by Sonoluminescence vol.91, pp.1, 2015, https://doi.org/10.1111/php.12352
  6. (B)/CNT Nanocomposites for Sonophotocatalytic and Photocatalytic Degradation of Malachite Green (MG) under Visible Light: Kinetic Study vol.121, pp.30, 2017, https://doi.org/10.1021/acs.jpca.7b02580
  7. -based Photocatalysis: Toward Visible Light-Responsive Photocatalysts Through Doping and Fabrication of Carbon-Based Nanocomposites vol.42, pp.4, 2017, https://doi.org/10.1080/10408436.2016.1211507
  8. Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity vol.18, pp.3, 2010, https://doi.org/10.1016/j.ultsonch.2010.10.008
  9. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts vol.21, pp.2, 2014, https://doi.org/10.1016/j.ultsonch.2013.08.014
  10. Low frequency ultrasound (42kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts vol.21, pp.5, 2014, https://doi.org/10.1016/j.ultsonch.2014.03.004
  11. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17 vol.22, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2014.05.023
  12. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process vol.23, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2014.08.023
  13. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/3746861
  14. Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase vol.28, pp.None, 2016, https://doi.org/10.1016/j.ultsonch.2015.07.002
  15. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate vol.38, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2017.03.044
  16. Improvements in Catalyst Synthesis and Photocatalytic Oxidation Processing Based on the Use of Ultrasound vol.378, pp.2, 2010, https://doi.org/10.1007/s41061-020-0293-9
  17. Synthesis and characterization of Ag/CeO2/graphene nanocomposites as catalysts for water-pollution treatment vol.530, pp.None, 2010, https://doi.org/10.1016/j.apsusc.2020.147297