Water Quality Improvement of Stagnant Water using an Upflow Activated Carbon Biofilm Process and Microbial Community Analysis

상향류 활성탄 생물막 공정을 이용한 정체 수역 수질 개선 및 공정 내 미생물 군집 해석

  • 오유미 (부산대학교 사회환경시스템공학부) ;
  • 이재호 ((주)수 엔지니어링) ;
  • 박정진 ((주)수 엔지니어링) ;
  • 최기충 ((주)수 엔지니어링) ;
  • 박태주 (한국환경정책평가연구원) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Received : 2009.10.22
  • Accepted : 2009.12.14
  • Published : 2010.01.31

Abstract

The capacity of natural purification was limited by the interruption of natural flow and the problems such as eutrophication were occurred by nutritive salts accumulation in stagnant stream. Moreover, the inflow of non-point sources causes non-degradable materials to increase in stagnant stream. In this study, an upflow biological activated carbon (BAC) biofilm process comprised of anoxic, aerobic 1, and aerobic 2 reactors were introduced for treatment of stagnant stream and SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP were monitored in the upflow BAC biofilm reactors with continuous cycling. In order to simulate stagnant stream, the lake water of amusement park and golf course were stored as influent in a tank of $2m^3$ and hydraulic retention time (HRT) was changed into 6, 4, and 2 hours. At HRT 4hr and the lake water of amusement park as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP showed the best water quality improvement and were 69.8, 83.0, 91.3, 74.1, 74.7, and 88.9%, respectively. At HRT 4hr and the lake water of golf course as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN and TP were 78.5, 78.0, 80.2, 74.9, 55.6 and 97.5%, respectively. As the results of polymerase chain reaction - denaturing gel gradient electrophoresis (PCR-DGGE), microbial community was different depending on influent type. Fluorescence in situ hybridization (FISH) showed that nitrifying bacteria was dominant at HRT 4 hr. The biomass amount and microbial activities by INT-DHA test were not decrease even at lower HRT condition. In this study, the upflow BAC biofilm process would be considered to the water quality improvement of stagnant stream.

정체수역에서는 자연적 흐름의 차단으로 인해 자정능력이 떨어지며, 영양염류의 축적으로 인해 부영양화와 같은 문제점이 발생한다. 또한 비점오염물질의 유입은 정체수역 내 난분해성 물질을 증가시킨다. 본 연구에서는 정체수역의 수질개선을 위해 무산소조, 호기1조, 호기2조로 구성된 장치형 상향류 활성탄 생물막 반응기를 도입하여 정체수의 연속적 순환에 따른 오염물질 농도의 변화를 모니터링 하였다. 정체수역을 모사하기 위하여 $2m^3$의 저장탱크에 유원지의 호소수를 저장하였으며, 수질개선을 위한 최적 유입 유량을 산출하기 위하여 HRT가 6 hr, 4 hr, 2 hr 가 되도록 호소수의 유입 유량을 변화시켰다. 이 가운데 HRT 4 hr에서 SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, TP의 제거 효율이 각각 69.8, 83.0, 91.3, 74.1, 74.7, 88.9%로 가장 좋은 수질 개선 효과를 얻을 수 있었다. 이에 HRT를 4 hr로 고정하고 골프장 연못수를 운전했을 때 SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$ TN, TP의 제거 효율이 각각 78.5, 78.0, 80.2, 74.9, 55.6, 97.5% 달성되었다. 각 조건에서의 미생물 군집 변화를 PCR-DGGE를 사용하여 분석 결과, 유입수를 골프장 연못수로 교체함에 따라 미생물 군집에 변화가 나타났다. 또한 FISH에 의해 유입 유량 변화에 따른 질산화 미생물량의 변화를 관찰한 결과, HRT 4 hr의 조건에서 질산화 미생물이 가장 우점화됨을 알 수 있었다. 미생물량 및 INT-DHA를 이용한 미생물 활성도 실험 결과, HRT를 낮게 유지하였을 때에도 감소되지 않았다. 따라서 상향류 활성탄 생물막 공정을 정체 수역의 효과적인 수질 개선에 충분히 적용할 수 있을 것으로 기대한다.

Keywords

References

  1. 황갑수, 김강주, 이영남, 여성구, 김진삼, "군산시 호소수에서의 수질특성과 THMs 생성에 관한 연구,"한국환경위생학회지, 27(1), 44-50(2001).
  2. Ramiro Logares, Andres Boltovskoy, Staffan Bensch, Johanna Laybourn-Parry, and Karin Rengefors, "Genetic Diversity Patterns in Five Protist Species Occurring in Lakes,"Proist, 160, 301-317(2009).
  3. Rebecca Lawson and Michael A. Anderson, "Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake," Water Res., 41, 4457-4467(2007). https://doi.org/10.1016/j.watres.2007.06.004
  4. G. X. Wang, L. M. Zhang, H. Chua, X. D. Li, M. F. Xia, and P. M. Pu, "A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes,"Ecological Eng., 35, 582-590(2009). https://doi.org/10.1016/j.ecoleng.2008.06.006
  5. Muyzer, G. and Smalla, K., "Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology,"Antonie van Leeuwenhoek, 73, 127-141(1998). https://doi.org/10.1023/A:1000669317571
  6. Zhaojun Li, Jianming Xu, Caixian Tang, Jianjun Wu, Akmal Muhammand, and Haizhen Wang, "Application of 16S rDNAPCR amplification and DGGE fingerpringting for detection of shift in microbial community diversity in Cu-, Zn-, and Cdcontaminated paddy soils,"Chemosphere, 62(8), 1374- 1380(2006). https://doi.org/10.1016/j.chemosphere.2005.07.050
  7. Schramm, A., De Beer, D., Wagner, M. and Amann, R., "Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant population in a nitrifying fluidized bedreactor,"Appl. Environ. Microbiol. ,64(9), 3480-3485(1998).
  8. Awong J., Bitton G., and Koopman B., "ATP, oxygen uptake rate and INT-dehydrogenase activity of actinomycete foams". Water Res., 19(7), 917-921(1985). https://doi.org/10.1016/0043-1354(85)90151-4
  9. Manz, W., Amann, R., Ludwig, W., Wagner, M. and Schleifer, K. H., "Phylogenetic oligodeoxynucleotide probe for the major subcalsses of proteobacteria : problems and solutions,"Appl. Microbiol., 15, 593-600(1992). https://doi.org/10.1016/S0723-2020(11)80121-9
  10. Amann, R., Ludwig W. and Schleifier K-H., "identification and in situ detection of individual microbial cells without cultivation,"Microbial. Review, 59(1), 143-169(1995).
  11. Koopman B., Bitton G., Logue C., John M. Bossart, and Juan M. Lopez, "Validity of tetrazolium reduction assays for assessing toxic inhibition of filamentous bacteria in activated sludge". Toxicity screening procedures using bacterial systems(Edited by Dickson Liu and Bernard J. Dutka), 147-162(1984).
  12. 이재원, 박종웅," 생물막 여과법에 의한 부영양화 호소수의전처리,"대한환경공학회 1998 춘계학술연구발표회 논문초록집, 스위스그랜드호텔, 서울, pp. 355-356(1998).
  13. Imat, T., Kusuda, T. and Furumat, H., "Kinetic study and mathematical modeling of biofilm in an anaerobic fluidized bed,"In Proc. 2nd Int. Specialized Conf. on Biofilm Reactors,Paris, France, pp. 463-470(1993).
  14. J. J. Park, I. G. Byun, J. C. Yu, S. R. Park, S. H. Hur and T. J. Park, "Analysis of Nitrifying Bacterial Communities in Aerobic Biofilm Reactors with Different DO Conditions using Molecular Techniques,"Water Sci. Technol., 57(12), 1889-99(2008). https://doi.org/10.2166/wst.2008.622
  15. J. J. Park, I. G. Byun, S. R. Park, and T. J. Park, "Nitrifying bacterial communities and its activities in aerobic biofilm reactors under different temperature conditions,"Korean. J. Chem. Eng., 25(6), 1448-1455(2008). https://doi.org/10.1007/s11814-008-0238-4