Importance of Weissella Species during Kimchi Fermentation and Future Works

김치발효에서 Weissella 속의 중요성과 앞으로의 연구 과제

  • Lee, Kang-Wook (Division of Applied Life Science(BK21), Graduate School) ;
  • Park, Ji-Yeong (Division of Applied Life Science(BK21), Graduate School) ;
  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science(BK21), Graduate School)
  • 이강욱 (경상대학교 대학원 응용생명과학부(BK21)) ;
  • 박지영 (경상대학교 대학원 응용생명과학부(BK21)) ;
  • 천지연 (순천대학교 식품공학과) ;
  • 한남수 (충북대학교 식품공학과) ;
  • 김정환 (경상대학교 대학원 응용생명과학부(BK21))
  • Received : 2010.07.09
  • Accepted : 2010.10.06
  • Published : 2010.12.28

Abstract

Weissella species are one of the most common lactic acid bacteria isolated from kimchi during kimchi fermentation but few researches have been done on this group of organisms. Its recent establishment as a separate genus is one reason for the few studies. Another reason is probably poor resolution of identification methods based on biochemical properties. Currently, 14 species are registered in the genus of Weissella but new members are reported continuously. It is important to understand at detail the properties and roles of Weissella species during kimchi fermentation if desirable properties of Weissella species are fully utilized for the production of high quality kimchi with good taste and enhanced biofunctionalities.

Weissella 종들은 김치발효중 가장 흔히 검출되는 유산균 들이지만 이들에 대한 연구는 매우 부족하다. 새로운 속으로 비교적 최근에 정립된 점이 연구가 미흡한 한 이유이고 생화학적 특성들에 기초한 동정법의 부정확성도 다른 이유가 된다. 현재 14종이 등록되어 있으나 새로운 종들이 계속 보고되고 있다. Weissella들의 특성과 김치발효중 역할을 상세히 이해하는 것이 중요하며 특히 맛과 기능성이 우수한 김치 제조를 위해 Weissella 균주들의 장점을 충분히 이용하려할 경우 중요하다.

Keywords

References

  1. Ahn, D.-K., T.-W. Han, H.-Y. Shin, I.-N. Jin, and S.-Y. Ghim. 2003. Diversity and antibacterial activity of lactic acid bacteria isolated from kimchi. Kor. J. Microbiol. Biotechnol. 31: 191-196.
  2. Bae, J.-W., S.-K. Rhee, J. R. Park, W.-H. Chung, Y.-D. Nam, I. Lee, H. Kim, and Y.-H. Park. 2005. Development and evaluation of genome-probing microarray for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71: 8825-8835. https://doi.org/10.1128/AEM.71.12.8825-8835.2005
  3. Bjorkroth, K. J., R. Geisen, U. Schillinger, N. Weiss, P. De Vos, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764-3772. https://doi.org/10.1128/AEM.66.9.3764-3772.2000
  4. Bjorkroth, K. J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52: 141-148.
  5. Champagne, C. P., T. A. Tompkins, N. D. Buckley, and J. M. Green-Johnson. 2010. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beberage. Food Microbiol. 27: 968-972. https://doi.org/10.1016/j.fm.2010.06.003
  6. Chang, H.-W., K.-H. Kim, Y.-D. Nam, S. W. Roh, M.-S. Kim, C. O. Jeon, H.-M. Oh, and J.-W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166. https://doi.org/10.1016/j.ijfoodmicro.2008.05.013
  7. Cheigh, H. S. and K. Y. Park. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34: 175-203. https://doi.org/10.1080/10408399409527656
  8. Chi, H., D.-H. Kim, and G.-E. Ji. 2005. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol. Pharm. Bull. 28: 2102-2105. https://doi.org/10.1248/bpb.28.2102
  9. Chin, H. S., F. Breidt, H. P. Fleming, W.-C. Shin, and S.-S. Yoon. 2006. Identification of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16: 68-76.
  10. Cho, J.-H., D.-Y. Lee, C.-N. Yang, J.-I. Jeon, J.-H. Kim, and H.-U. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
  11. Choi, H.-J., C.-I. Cheigh, S.-B. Kim, J.-C. Lee, D.-W. Lee, S.-W. Choi, J.-M. Park, and Y.-R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
  12. Choi, I.-K., S.-H. Jung, B.-J. Kim, S.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek 84: 247-253. https://doi.org/10.1023/A:1026050410724
  13. Chun, J., G. M. Kim, K. W. Lee, I. D. Choi, G.–H. Kwon, J.– H. Park, S.–J. Jeong, J. S. Kim, and J. H. Kim. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food. Sci. 72: 39-44.
  14. Chun, J., J. S. Kim and J. H. Kim. 2008. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 109: 278-284. https://doi.org/10.1016/j.foodchem.2007.12.024
  15. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  16. De Bruyne, K., N. Camu, K. Lefebvre, L. De Vuyst, and P. Vandamme. 2008. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 58: 2721-2725. https://doi.org/10.1099/ijs.0.65853-0
  17. De Bruyne, K., N. Camu, L. De Vuyst, and P. Vandamme. 2010. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 60: 1999-2005. https://doi.org/10.1099/ijs.0.019323-0
  18. Donkor, O. N. and N. P. Shah. 2008. Production of betaglucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food. Sci. 73: 15-20.
  19. Ennahar, S. and Y. Cai. 2004. Genetic evidence that Weissella kimchii Choi et al. 2002 is a later heterotypic synonym of Weissella cibaria Bjorkroth et al. 2002. Int. J. Syst. Evol. Microbiol. 54: 463-465. https://doi.org/10.1099/ijs.0.02783-0
  20. Hong, S. W., L. K. You, B. M. Jung, W. S. Kim, and K. S. Chung. 2009. Characterization of $\alpha-galactosidase$ and $\beta-glucosidase$ by Weissella cibaria. Kor. J. Microbiol. Biotechnol. 37: 204-212.
  21. Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutrit. 130: 1695-1699.
  22. Kim, B., J. Lee, J. Jang, J. Kim, and H. Han. 2003. Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol. 53: 1123-1126. https://doi.org/10.1099/ijs.0.02463-0
  23. Kim, M.-J. and J.-S. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  24. Kim, M.-J., H. N. Seo, T. S. Hwang, S. H. Lee, and D. H. Park. 2008. Characterization of exopolysaccharide (EPS) produced by Weissella hellenica SKkimchi3 isolated from kimchi. The J. Microbiol. 46: 535-541. https://doi.org/10.1007/s12275-008-0134-y
  25. Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microbial changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotechnol. 20: 102-109.
  26. Lee, D.-Y., S.-J. Kim, J.-H. Cho, and J.-H. Kim. 2008. Microbial population dynamics and temperature changes during fermentation of kimjang Kimchi. The J. Microbiol. 46: 590-593. https://doi.org/10.1007/s12275-008-0156-5
  27. Lee, H.-J., Y.-J. Joo, C.-S. Park, J. S. Lee, Y.-H. Park, J.-S. Ahn, and T.-I. Mheen. 1999. Fermentation patterns of green onion kimchi and Chinese cabbage kimchi. Kor. J. Food Sci. Technol. 31: 488-494.
  28. Lee, J.-S., K. C. Lee, J.-S. Ahn, T.-I. Mheen, Y.-R. Pyun, and Y.-H. Park. 2002. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52: 1257-1261. https://doi.org/10.1099/ijs.0.02074-0
  29. Lee, J.-S., G.-Y. Heo, J. W. Lee, Y.-J. Oh, J. A. Park, Y.-H. Park, Y.-R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102:143-150. https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  30. Lee, S. O., C. S. Kim, S. K. Cho, H. J. Choi, G. E. Ji, and D. K. Oh. 2003. Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol. Lett. 25: 935-938. https://doi.org/10.1023/A:1024084203052
  31. Liang, Z.-Q., S. Srinivasan, Y.-J. Kim, H.-B. Kim, H.-T. Wang, and D.-C. Yang. 2010. Lactobacillus kimchicus sp. nov., a $\beta-glucosidase$ producing bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol. (in press) doi:10.1099/ ijs.0.017418-0.
  32. Magnusson, J., H. Jonsson, J. Schnurer, and S. Roos. 2002. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 52: 831-834. https://doi.org/10.1099/ijs.0.02015-0
  33. Mheen, T.-I. and T.-W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  34. Nam, Y.-D., H.-W. Chang, K.-H. Kim, S.-W. Roh, and J.-W. Bae. 2009. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130: 140-146. https://doi.org/10.1016/j.ijfoodmicro.2009.01.007
  35. Padonou, S. W., U. Schillinger, D. S. Nielsen, C. M. A. P. Franz, M. Hansen, J. D. Hounhouigan, M. C. Nago, and M. Jakobsen. 2010. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. Int. J. Syst. Evol. Microbiol. 60: 2193-2198. https://doi.org/10.1099/ijs.0.014332-0
  36. Park, H. J., Y.-H. Park, and Y. B. Kim. 2001. Characterization of growth and ethanol formation of Weissella paramesenteroides P30. Food Sci. Biotechnol. 10: 72-75.
  37. Park, J. A., G.–Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, C. K. Kim, and J. S. Ahn. 2003. Change of microbial communities in kimchi fermentation at low temperature. The Kor. J. Microbiol. 39: 45-50.
  38. Pham, T. T and N. P. Shah. 2008. Effect of lactulose on biotransformation of isoflavone glycosides to aglycones in soymilk by lactobacilli. J. Food. Sci. 73: 158-165.
  39. Raimondi, S., L. roncaglia, M. de Lucia, A. Amaretti, A. Leonardi, U. M. Pagnoni, and M. Rossi. 2009. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl. Microbiol. Biotechnol. 81: 943-950. https://doi.org/10.1007/s00253-008-1719-4
  40. Shim, S.-M. and J.-H. Lee. 2008. Evaluation of lactic acid bacteria community in Kimchi using terminal-restriction fragment length polymorphism analysis. Kor. J. Microbiol. Biotechnol. 36: 247-259.
  41. Tanasupawat, S., O. Shida, S. Okada, and K. Komagata. 2000. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int. J. Syst. Evol. Microbiol. 50: 1479-1485. https://doi.org/10.1099/00207713-50-4-1479
  42. Tang, A. L., N. P. Shah, G. Wilcox, K. Z. Walker, and L. Stojanovska. 2007. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. J. Food. Sci. 72: 431-436. https://doi.org/10.1111/j.1750-3841.2007.00520.x
  43. Yu, J.-J., H.-J. Park, S.-G. Kim, and S.-H. Oh. 2009. Isolation, identification, and characterization of Weissella strains with high ornithine producing capacity from kimchi. Kor. J. Microbiol. 45: 339-345.