Isolation of Bacillus licheniformis Producing Antimicrobial Agents against Bacillus cereus and Its Properties

Bacillus cereus 증식 억제능을 가지는 Bacillus licheniformis SCK 121057의 분리 및 특징

  • Kim, Yong-Sang (Faculty of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Yun, Suk-Hyun (Faculty of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Jeong, Do-Yeon (Institute of Sunchang Fermented Soybean Products) ;
  • Hahn, Kum-Su (Institute of Sunchang Fermented Soybean Products) ;
  • Uhm, Tai-Boong (Faculty of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University)
  • 김용상 (전북대학교 자연과학대학 생물과학부 및 전북대학교 유전공학연구소) ;
  • 윤숙현 (전북대학교 자연과학대학 생물과학부 및 전북대학교 유전공학연구소) ;
  • 정도연 (순창장류연구소) ;
  • 한금수 (순창장류연구소) ;
  • 엄태붕 (전북대학교 자연과학대학 생물과학부 및 전북대학교 유전공학연구소)
  • Received : 2010.07.26
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

In order to manufacture Bacillus cereus-free fermented soybean products, an antimicrobial agentproducing isolate against B. cereus was obtained from 150 traditionally fermented soybean products. The morphological and biochemical tests and the phylogenetic relationship among 16S rRNA gene sequences indicated that the isolate named as the strain SCK 121057 was most closely related to Bacillus licheniformis. The B. licheniformis isolate began to produce the antimicrobial agent after 48 h of incubation. The agent was nonproteinaceous and insensitive to heat, long term storage and protease K. Electron microscopic observation indicated that the agent attacked the membrane of B. cereus, leaving the ghost cell. The isolate inhibited growth of B. subtilis, Lactobacillus brevis and various types of pathogenic strains including Escherichia coli, E. faecalis, Micrococcus luteus, Staphylococcus aureus, Aspergillus flavus, A. ochraceus, and A. parasiticus as well as B. cereus. After coinoculation of B. licheniformis SCK 121057 and B. cereus in the ratio (as the basis of CFU/g sample) of 10 to 1 on the surface of cooked soybeans, cell numbers of B. cereus had been dramatically reduced after 31 days of incubation compared to those of single inoculation of B. cereus.

장류 제조에 Bacillus cereus의 오염을 줄이기 위한 방법으로 전국 150 종 장류에서 분리한 무독소 Bacillus subtilis 및 Bacillus licheniformis 균들을 대상으로 B. cereus에 대해 억제능력이 큰 한 균주 SCK 121057를 선발하였다. SCK 121057은 생화학 검사 및 16S rRNA 유전자 서열에 의한 계통도 분석 결과 B. licheniformis로 동정되었고 12 종의 B. cereus 이외에 중요 병원성 균인 Staphylococcus aureus, Aspergillus flavus, A. ochraceus, A. parasiticus 등의 증식을 억제하였다. SCK 121057이 생산하는 항균 물질은 고압멸균 조건에서 열안정성, proteinase K에 대한 가수 분해 저항성, $37^{\circ}C$에서 장기 저장성을 지닌 구조적으로 매우 안정한 물질이었고, 전자현미경 관찰에서 이 물질은 B. cereus의 세포막을 손상시켜 ghost cell을 형성하였다. SCK 121057 균과 B. cereus를 혼합 접종한 청국장 적용 실험 결과 B. cereus 균수는 대조군에 비해 극적으로 감소되었다.

Keywords

References

  1. De Lucca, A.J. and T.J. Walsh. 1999. Antifungal peptides: Novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43, 1-11.
  2. Dischinger, J., M. Josten, C. Szekat, H. Sahl, and G. Bierbaum. 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4, 1-11. https://doi.org/10.1371/journal.pone.0005361
  3. Edberg, S.C. 1992. US EPA human health assessment: Bacillus licheniformis. U.S. Environmental Protection Agency, Washington, D.C., USA.
  4. Gohar, M., K. Faegri, S. Perchat, S. Ravnum, O. Okstad, M. Gominet, A. Kolste, and D. Lereclus. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS One 3, 1-9.
  5. Grangemard, I., J. Wallach, R. Maget-Dana, and F. Peypoux. 2001. Lichenysin: A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 90, 199-210. https://doi.org/10.1385/ABAB:90:3:199
  6. Jung, S.S., J.I. Choi, W.H. Joo, H.H. Suh, A.S. Na, Y.K. Cho, J.Y. Moon, K.C. Ha, D.H. Paik, and D.O. Kang. 2009. Characterization and purification of the bacteriocin produced by Bacillus licheniformis isolated from soybean sauce. J. Life Sci. 19, 994-1002. https://doi.org/10.5352/JLS.2009.19.7.994
  7. Katz, E. and A.L. Demain. 1977. The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41, 449-474.
  8. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolution 16, 111-120. https://doi.org/10.1007/BF01731581
  9. Nakano, M.M., R. Magnuson, A. Myers, J. Curry, A.D. Grossman, and P. Zuber. 1991. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173, 1770-1778. https://doi.org/10.1128/jb.173.5.1770-1778.1991
  10. Ryu, H.S., M.Y. Shon, S.J. Cho, S.K. Park, and S.W. Lee. 2007. Characterization of antibacterial substance-producing Bacillus subtilis isolated from traditional Doenjang. J. Kor. Soc. Appl. Biol. Chem. 50, 87-94.
  11. Swofford, D.L. 1998. PAUP. Phylogenetic Analysis Using Parsimony. 4.0 ed. Sinauer Associates, Sunderland, MA, USA.
  12. Tagg, J.R., A.S. Dajani, and L.W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40, 722-756.
  13. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighing position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  14. Yakimov, M.M., K.N. Timmis, V. Wray, and H.H. Fredrickson. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706-1713.
  15. Yang, E.J. and H.C. Chang. 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35, 339-346.
  16. Yun, S.H., Y.S. Kim, S.K. So, D.Y. Jeong, K.S. Hahn, and T.B. Uhm. 2009. Detection of plcR-papR genes by PCR in identifying enterotoxin genes-harboring Bacillus cereus strains. Kor. J. Microbiol. 45, 425-429.
  17. Zhang, Z., S. Schwarz, L. Wagner, and W. Miller. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214. https://doi.org/10.1089/10665270050081478