DOI QR코드

DOI QR Code

Quantitative Changes of Hydroxycinnamic Acid Derivatives and Anthocyanin in Corn (Zea mays L.) According to Cultivars and Heat Processes

옥수수의 품종별 및 가공별 Hydroxycinnamic Acid 유도체 및 Anthocyanin 색소의 함량 변화

  • Yu, Myeong-Hwa (Dept. Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Eun-Ok (Dept. Food Science and Nutrition, Catholic University of Daegu) ;
  • Choi, Sang-Won (Dept. Food Science and Nutrition, Catholic University of Daegu)
  • 유명화 (대구가톨릭대학교 식품영양학과) ;
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Received : 2010.03.10
  • Accepted : 2010.04.08
  • Published : 2010.06.30

Abstract

Hydroxycinnamic acid derivatives (HADs) and anthocyanins in corn (Zea mays L.) have recently been reported to have anticarcinogenic, anti-hypertensive, antidiabetic, antifungal, antioxidant, and anti-melanogenic activities. Five HADs and anthocyanins in corn were quantified by HPLC according to cultivars and heat processes. In addition, major anthocyanin of a black waxy corn was isolated and identified by several instrumental analysis, and its content was also quantified by HPLC according to heat processes. Of the ten corn cultivars, five waxy corn cultivars had moderate five HADs contents except "Baksa" waxy corn with higher two free cinnamic acids (FCAs), p-coumaric and ferulic acids. In contrast, three dent corn cultivars contained higher levels of three polyamine conjugates (PCs), CFP, DCP and DFP, and especially "P3394" had the highest amount of the three PCs. Two sweet corn cultivars had generally intermediate HADs levels between waxy and dent corn cultivars. Of the three colored-waxy corns, a black Mibaek waxy corn had the highest anthocyanin content. During heat processes, levels of two FCAs in the black waxy corn generally increased, whereas no significant change on three PCs contents was observed except the puffing process. Roasting, retort and puffing processes significantly increased two FCAs and especially, the puffed black waxy corn had the highest amount of FCAs. Meanwhile, most heat treatments except retort process, considerably decreased total anthocyanin contents, and especially the puffed black waxy corn had nearly no anthocyanin. Level of one major anthocyanin, pelargonidin 3-glucoside (P3G) isolated from a black waxy corn was appreciably decreased by heat treatments except retort process, which greatly increased P3G content. These results suggest that the retorted black waxy corn may be a promising high quality functional corn product.

옥수수를 이용한 고품질의 가공식품을 개발하기 위한 연구의 일환으로 옥수수의 품종별 및 가열처리에 따른 기능성 폴리페놀화합물인 hydroxycinnamic acid derivatives(HADs) 및 안토시아닌 색소의 함량 변화를 조사하였다. 국내산 3가지 옥수수 품종(찰옥수수, 감미옥수수 및 사료용 옥수수)의 일반성분 함량을 측정한 결과, 수분함량은 4.13~10.07%, 무질소화합물 65.57~81.75%, 단백질 6.51~15.15%, 지방 3.16~12.35%, 섬유소 2.09~7.81%, 회분 1.40~1.96% 범위로, 찰옥수수의 일반성분의 함량은 비슷하였으나 감미종 옥수수는 찰옥수수보다 단백질과 지방 함량이 높은 반면, 당 함량은 낮았으며, 특히 감미종 중 감미옥 품종은 지방과 섬유소 함량이 옥수수 품종 중 가장 높은 함량을 나타내었고, 사료용 옥수수는 단백질 및 지방 함량이 매우 낮았으며, 특히 단백질 함량은 옥수수 품종 중 가장 낮았다. 옥수수 품종 중 찰옥수수는 5가지 HADs 함량이 골고루 분포하고 있는 반면, 사료용 옥수수는 2가지 FCAs의 함량은 낮은 반면, 3가지 PCs 함량이 가장 높았으며, 특히 P3394 품종이 가장 높았다. 감미 옥수수는 찰옥수수보다 FCAs의 함량은 대체로 높은 반면, PCs는 사료용보다 적어 대체로 찰옥수수와 사료용 옥수수의 중간 정도의 HADs 함량을 나타내었다. 찰옥수수 품종 중 박사찰옥수수의 총 안토시아닌 색소 함량은 2.03 mg/g(건물중), 알록이찰옥수수는 3.43 mg/g, 그리고 흑찰옥수수의 함량은 4.35 mg/g으로서 흑미백찰옥수수의 총 안토시아닌 색소 함량이 가장 높았다. 가열처리에 따라 흑찰옥수수의 2가지 FCAs는 다소 증가한 반면, 3가지 PCs는 거의 변화가 없었으며, 가열처리 중 볶음, retort 및 팽화처리는 FCAs를 증가시켰고 특히 팽화처리 시 크게 증가하였다. 가열처리에 따른 흑찰옥수수의 총 안토시아닌 색소 함량을 측정한 결과, 대조구 함량은 4.35 mg/g이었으나 retort 처리(4.45 mg/g) 경우를 제외하고 대부분 가열처리에 따라 함량이 감소하는 경향을 나타내었으며, 특히 팽화처리 경우 안토시아닌 함량이 크게 감소하여 거의 소실되었다. 흑미백찰옥수수로부터 주된 안토시아닌 색소인 pelargonidin 3-glucoside(P3G)를 분리 및 동정하였으며, 가열처리에 따른 P3G의 함량 변화를 측정한 결과, retort 처리 경우 함량이 다소 증가한(20.03 mg%) 반면, 그 외 볶음, 마이크로파 및 압출성형 처리에 의해 대체로 감소하였으며, 특히 팽화처리 경우 색소가 거의 소실되었다. 이러한 결과를 종합해 볼 때 옥수수의 기능성성분인 HADs 및 안토시아닌 색소 함량은 옥수수 품종 및 가공처리에 따라 다소 달라짐을 알 수 있었으며, 특히 옥수수 품종 중 항암, 항고혈압, 항당뇨 및 항노화성 FCAs 및 안토시아닌 색소 함량이 높은 흑찰옥수수의 대량 보급과 더불어 고압가열처리(retort)에 의한 고품질의 흑찰옥수수 가공품 개발이 요구된다.

Keywords

References

  1. Statistic of Death Cause. 2006. Korea National Statistical Office, Seoul, Korea.
  2. Hasler CM. 1998. Functional foods: Their role in disease prevention and health promotion. Food Technol 52: 63-70.
  3. Kim HK. 2004. Current status and prospect of nutraceuticals.Food Indus Nutr 9: 1-14.
  4. Hyun YH, Goo BS, Song JE, Kim DS. 2008. Food material. Hyungseul Publishing Co, Daegu, Korea. p 55-57.
  5. Duensing WJ, Roskens AB, Alexander RJ. 2003. Corn dry milling: processes, products, and applications. In Corn Chemistry and Technology. 2nd ed. AACC International, St. Paul, MN, USA. p 407-447.
  6. Plate AYA, Gallaher DD. 2005. The potential health benefits of corn components and products. Cereal Foods World 50:305-314.
  7. Sosulski F, Krygier K, Hogge L. 1982. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J Agric Food Chem 30:337-340. https://doi.org/10.1021/jf00110a030
  8. Sen A, Bergvomsp D, Miller SS, Atkinson J, Fulcher RG,Arnason JT. 1994. Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J Agric Food Chem 42: 1879-1883. https://doi.org/10.1021/jf00045a009
  9. Niwa T, Doi U, Osawa T. 2003. Inhibitory activity of cornderived bisamide compounds against α-glucosidase. J Agric Food Chem 51: 90-94. https://doi.org/10.1021/jf020758x
  10. Mellon JE, Moreau RA. 2004. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by diferuloylputrescine and p-coumaroylferuloylputrescine. J Agric Food Chem 52: 6660-6663. https://doi.org/10.1021/jf040226b
  11. Choi SW, Lee SK, Kim EO, Oh JH, Yoon KS, Parris N,Hicks KB, Moreau RA. 2007. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J Agric Food Chem 23:1090-1092.
  12. Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC.2002. LC-MS analysis of anthocyanins from purple corn cob. J Sci Food Agric 82: 1003-1006. https://doi.org/10.1002/jsfa.1143
  13. Yang ZD. 2010. Optimization of anthocyanins extract from purple corn (Zea mays L.) and identification of anthocyanin of extracts using high-performance liquid chromatographymass spectrometry. Int J Food Sci Technol (accept)
  14. Hagiwara A, Miyashita K, Nakanishi T, Sano M, TamanoS, Kadota T. 2001. Pronounced inhibition by a natural anthocyanin, purple corn colour, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colourectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Letters 171: 17-25. https://doi.org/10.1016/S0304-3835(01)00510-9
  15. Cevallos-Casals BA, Cisneros-Zevallos LA. 2003. A comparative study of antimicrobial, antimutagenic and antioxidant activity of phenolic compounds from purple corn and bilberry colourant extracts. In Book of Abstracts of the Institute of Food Technologists Technical Program Abstracts. Chicago, IL, USA. Poster No. 14E-1, p 29.
  16. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. 2003. Dietary cyanidin 3-O-$\beta$-D-glucoside rich purple corn colour prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133: 2125-2130. https://doi.org/10.1093/jn/133.7.2125
  17. Suher CS, Chun JK. 1981. Relationships among the roasting conditions, colors and extractable solid content of roasted barley. Korean J Food Sci Technol 13: 334-339.
  18. Moreau RA, Hicks KB, Powell MJ. 1999. Effect of heat pretreatment on the yield and composition of oil extracted from corn fiber. J Agric Food Chem 47: 2869-2871. https://doi.org/10.1021/jf981186c
  19. Saulnier L, Vigouroux J, Thibault JF. 1995. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272: 241-253. https://doi.org/10.1016/0008-6215(95)00053-V
  20. Singh V, Johnston DB, Moreau RA, Hicks KB, Dien BS,Bothast RJ. 2003. Pretreatment of wet-milled corn fiber to improve recovery of corn fiber oil and phytosterols. Cereal Chem 80: 118-122. https://doi.org/10.1094/CCHEM.2003.80.2.118
  21. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:4959-4964. https://doi.org/10.1021/jf0255937
  22. Roussel L, Vieille A, Billet I, Cheftel JC. 1991. Sequential heat gelatinization and enzymatic hydrolysis of corn starch in an extrusion reactor. Optimization for a maximum dextrose equivalent. Lebensm Wiss Technol 24: 449-458.
  23. Korea Food and Drug Administration. 2002. Food Standard Code (Appendix). Seoul, Korea. p 3-29.
  24. Kim EO, Yu MH, Lee KT, Yoon KS, Choi SW. 2009. Effect of thermal pretreatment on the functional constituents of waxy corn (Zea mays L.). Food Sci Biotechnol 18: 1336-1341.
  25. National Rural Living Science Institute. 2002. Food Composition Table 48. 6th revision, RDA, Suweon, Korea. p 13-15.
  26. Zhang LP, Ji ZZ. 1992. Synthesis, antiinflammatory and anticancer activity of cinnamic acids, their derivatives and analogues. Yao Xue Xue Bao 27: 817-823.
  27. Graf E. 1992. Antioxidant potential of ferulic acid. Free Radic Biol Med 13: 435-448. https://doi.org/10.1016/0891-5849(92)90184-I
  28. Natella F, Nardini M, Di Felice M, Scaccini C. 1999. Benzoic and cinnamic acid derivatives as antioxidants: structureactivity relation. J Agric Food Chem 47: 1453-1459. https://doi.org/10.1021/jf980737w
  29. Ohnishi M, Matuo T, Tsuno T, Hosoda A, Nomura E,Taniguchi H, Sasaki H, Moricita H. 2004. Antioxidant activity and hypoglycemic effect of ferulic acid in STZinduced diabetic mice and $KK-A^y$ mice. BioFactors 21:315-319. https://doi.org/10.1002/biof.552210161
  30. Moreau RA, Nunez A, Singh V. 2001. Diferuloyputrescine and $\rho$-coumaroyl-feruloylputrescine, abundant polyamine conjugates in lipid extracts of maize kernels. Lipids 36: 839-843. https://doi.org/10.1007/s11745-001-0793-6
  31. Corn cultivars. http://www.jeilseed.com/front/php/category.php?cate_no=36
  32. Lee KT, Lee JY, Kwon YJ, Yu F, Choi SW. 2004. Changes in functional constituents of grape (Vitis vinifera) seed by different heat pretreatments. J Food Sci Nutr 9: 144-149. https://doi.org/10.3746/jfn.2004.9.2.144
  33. Cevallos-Casals BA, Cisneros-Zevallos L. 2004. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem 86: 69-77. https://doi.org/10.1016/j.foodchem.2003.08.011
  34. Choi SW, Kang WW, Osawa T. 1994. Isolation and identification of anthocyanin pigments in black rice. Foods Biotechnol 3: 131-136.
  35. Strack D, Wray V. 1994. The anthocyanins. In The Flavonoids. Harvone JB, ed. Chapman & Hall, London, UK. p 234-250.
  36. Francis F. 1989. Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28: 273-314. https://doi.org/10.1080/10408398909527503

Cited by

  1. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages vol.50, pp.5, 2012, https://doi.org/10.1016/j.fct.2012.02.011
  2. Proximate, Free Sugar, Fatty acids Composition and Anthocyanins of Saekso 2 Corn Kernels vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.335
  3. Comparison on Physicochemical and Cooking Properties of Milled Kernel in Waxy Corn Hybrids vol.58, pp.4, 2013, https://doi.org/10.7740/kjcs.2013.58.4.424
  4. Changes in the Functional Components and Radical Scavenging Activity of Korean Maize Hybrids According to Different Cropping Seasons vol.21, pp.1, 2018, https://doi.org/10.1007/s12892-017-0117-0
  5. 강일옥 옥수수의 영양성분, 카로티노이드 함량분석 및 생리활성 평가 vol.32, pp.6, 2010, https://doi.org/10.13103/jfhs.2017.32.6.513
  6. 탄수화물 가수분해효소 처리가 옥수수 가루의 페놀산과 항산화활성에 미치는 영향 vol.50, pp.2, 2010, https://doi.org/10.9721/kjfst.2018.50.2.132
  7. A Yellow Waxy Corn Single Cross Hybrid 'Goldchal' with High Carotenoid Content vol.50, pp.3, 2018, https://doi.org/10.9787/kjbs.2018.50.3.268
  8. 국내 육성 팝콘 옥수수 품종별 영양성분 분석 연구 vol.34, pp.5, 2010, https://doi.org/10.13103/jfhs.2019.34.5.438