DOI QR코드

DOI QR Code

Effects of Dried Whole Crop Barley Treated with Cellulolytic Microorganisms on In Vitro Fermentation Characteristics in Swine

섬유소 분해균을 이용한 건조 청보리 발효사료가 돼지의 In vitro 발효 특성에 미치는 영향

  • Park, Do-Yeun (School of Animal Life and Environment Science, Hankyong National University) ;
  • Park, Joong-Kook (School of Animal Life and Environment Science, Hankyong National University) ;
  • Cho, Sung-Back (National Institute of Animal Science, RDA) ;
  • Kim, Chang-Hyun (School of Animal Life and Environment Science, Hankyong National University)
  • Received : 2010.04.02
  • Accepted : 2010.06.03
  • Published : 2010.06.30

Abstract

The experiment was conducted to observe the effects of dried whole crop barley treated with cellulolytic microorganisms (Aspergillus niger KCCM 60357 and Bacillus licheniformis KCCM 40934) on the chemical composition, in vitro colonic fermentation and whole tract digestibility in swine. Whole crop barley were fermented with no microorganism addition (control), A. niger, B. licheniformis and co-culture of A. niger and B. licheniformis (Mixture) for 3 days at $30^{\circ}C$. In the feed chemical composition, CP contents of whole crop barley treated with A. niger (7.52%) and B. licheniformis (7.77%) were significantly higher than control (6.81%) (p<0.05). The in vitro colonic fermentation of dried whole crop barley fermented with control showed significantly higher $CH_4$ contents than A. niger, B. licheniformis and Mixture at 18h incubation (p<0.05). Dry matter (DM) digestibilities of A. niger (55%) and Mixture (57.42%) treatments were significantly higher than control (43.74%) (p<0.05). Ammonia-N was significantly increased in A. niger, B. licheniformis and Mixture relative to control at 24 hour incubation (p<0.05). Xylanase activities in A. niger, B. licheniformis and Mixture treatments were significantly higher than control at 24 hour incubation (p<0.05). Concentrations of total VFA were significantly increased in B. licheniformis (12.61 mM) at 24hour incubation (p<0.05). In vitro whole tract digestibility was significantly increased in B. licheniformis (49.61%) compared with the control (45.65%) (p<0.05). In conclusion, whole crop barley treated with cellulolytic microorganisms improved whole tract digestibility and colonic fermentation for swine.

본 연구는 높은 섬유소 분해력을 검증 받은 Aspergillus niger (KCCM 60357)와 Bacillus licheniformis (KCCM 40934)를 단독 및 혼합 배양한 미생물제제로 양돈용 청보리 발효사료를 제조하였을 때 사료 성상변화, in vitro 대장발효 및 전장소화율에 미치는 영향을 평가하였다. 실험 설계는 건조 청보리 (control), A. niger (control + A. niger), B. licheniformis (control + B. licheniformis) 및 Mixture (control + Aspergillus niger + Bacillus licheniformis)구로, 균주를 첨가시킨 발효사료에 따라 네 처리군으로 나누었다. 사료 성분변화는 발효사료의 일반 성분분석을 통해 확인하였으며, 그 결과 A. niger 및 B. licheniformis구에서 조단백질과 조지방 함량이 유의하게 증가하였다 (p<0.05). In vitro 대장발효성상의 변화는 배양 후 24시간에 건물 분해율이 A. niger와 Mixture구에서 각각 55 및 57.42%로 대조구 및 B. licheniformis구와 비교하여 유의하게 높았다 (p<0.05). 가스 발생량은 대조구에서 유의적으로 가장 높았으며, 메탄가스 농도는 모든 처리구가 대조구에 비해 증가되었다. pH는 대조구를 비롯한 모든 처리구가 6.8 로 확인되었으며, 암모니아 질소는 모든 발효사료에서 유의하게 증가되었다. Xylanase 활력은 A. niger구가 유의적으로 높았으며 모든 처리구의 활력이 증가하였다 (p<0.05). 총 VFA 농도는 배양 후 24시간에 B. licheniformis구에서 높은 농도 (12.61mM)를 보여주며 VFA 개선효과를 나타냈다 (p<0.05). In vitro 전장 소화율은 B. licheniformis구에서 49.61%로 대조구의 45.65% 보다 소화율이 유의적으로 증진되었다(p<0.05). 따라서 본 실험에 사용된 미생물을 이용하여 청보리 발효사료를 제조하였을 때 전장 소화율 및 대장발효 환경 개선에 충분한 효과가 있을 것으로 기대된다.

Keywords

References

  1. 길동용, 임종선, 전경철, 김법균, 김경수, 김유용. 2004. 지속적인 생균제의 첨가가 돼지의 성장, 영양소 이용률, 혈중 요소태 질소 및 면역능력에 미치는 영향. 한국동물자원학회지. 46(1):39-48. https://doi.org/10.5187/JAST.2004.46.1.039
  2. 김원호, 서 성, 윤세형, 김기용, 조영무, 박태일, 고종민, 박근제. 2003. 사일리지용 우량 보리품종 선발 2. 사료가치 및 TDN 수량. 한국초지학회지. 23(4):283-288. https://doi.org/10.5333/KGFS.2003.23.4.283
  3. 농림부․농촌진흥청 축산기술연구소. 2007. 한국사양표준(돼지). 상록사.
  4. 박중국, 정찬성, 박도연, 김현철, 이승철, 김창현. 2009. 반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향. 한국동물자원과학회지. 51(1):45-52. https://doi.org/10.5187/JAST.2009.51.1.045
  5. 송영민, 하지희. 2007. 부산물을 이용하여 제조한 발효사료의 사료적 가치평가에 관한 연구. 농업기술연구소보. 20:153-162.
  6. 신승오, 한영근, 조진호, 김해진, 진영걸, 유종상, 황광연, 김정우, 김인호. 2007. 호맥사일리지의 급여기간이 비육돈의 생산성, 혈액 성상 및 도체 특성에 미치는 영향. 한국축산식품학회지 27(4): 392-400. https://doi.org/10.5851/kosfa.2007.27.4.392
  7. 정만재. 1997. Aspergillus niger가 생성하는 생전분 분해효소의 정제와 특성. 산업미생물학회지. 25(2):166-172.
  8. 한인규, 최창애, 박태진, 정숙근. 1967. 고구마 양돈사료에 관한 시험. 축산시험연구소보. pp. 453-481.
  9. AOAC. 1995. Official Methods of Analysis(16th ed..) Association of Official Analytical Chemists Washington, D.C, USA.
  10. Barry, J.L., Hoebler, C. and Macfarlane, G.T. 1995. Estimation of the fermentability of dietary fibre in vitro: A European interlaboratory study. Br. J. Nutr. 74:303-322. https://doi.org/10.1079/BJN19950137
  11. Beauchemin, K.A., Yang, W.Z. and Rode, L.M. 1999. Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows. J. Dairy Sci. 82:378-390. https://doi.org/10.3168/jds.S0022-0302(99)75244-6
  12. Beauchemin, K.A., Rode, L.M. and Yang, W.Z. 1997. Effects of nonstructural carbohydrates and source of cereal grain in high concentrate diets of dairy cows. J. Dairy Sci. 80:1640-1650. https://doi.org/10.3168/jds.S0022-0302(97)76095-8
  13. Beuvink, J.M.W. and Spoelstra. S.F. 1993. Interactions between substrate, fermentation endproducts, buffering systems and gas production upon fermentation of differing carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbil. Biotechnol. 37:505-509.
  14. Boisen, S. and Fernandez, J.A. 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 68:277-286. https://doi.org/10.1016/S0377-8401(97)00058-8
  15. Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-132.
  16. Dierick, N.A., Vervaeke, I.J., Demeyera, D.I. and Decuyperea, J.A. 1989. Approach to the energetic importance of fibre digestion in pigs. I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 23:141-167. https://doi.org/10.1016/0377-8401(89)90095-3
  17. Duncan, D.B. 1955. Multiple range and multiple F test. Biometrics. 11:1-42. https://doi.org/10.2307/3001478
  18. Hristov, A.N., McAllister, T.A. and Cheng, K.J. 2000. Intraruminal supplementation with increasing levels of exogenous polysaccharide degrading enzymes: Effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 78:477-487. https://doi.org/10.2527/2000.782477x
  19. Kapoor, K.K., Chaudhary, K. and Tauri P. 1982. Citric acid, in Prescott and Dunn’s industria microbiology. Champman & Hall. USA. pp. 709-711.
  20. King, R.H. 1989. Effects of live weight and body composition of gilt at 24 week of age on subsequent reproductive efficiency. Anim. Prod. 49:105-116.
  21. Kung, L. 2001. Developments in rumen fermentation commercial applications : In Recent advances in animal nutrition, Edited by P.C. Garnsworthy and D.J.A. Cole. Nottingham. Univ. Press. pp. 281-295.
  22. Langston, C.W. and Bouma, C. 1960. A study of the microorganisms grass silage : II The Lactobacill. Appl. Microbiol. 8:223-234.
  23. McBurney, M.I. and Sauer, W.C. 1993. Fiber and large bowel energy absorption: Validation of the integrated ileostomy-fermentation model using pigs. J. Nutr. 123:721-727. https://doi.org/10.1093/jn/123.4.721
  24. McAllister, T.A., Oosting, S.J., Popp, J.D., Mir, Z., Yanke, L.J., Hristov, A.N., Treacher, R.J. and Cheng, K.J. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. 79:353-360. https://doi.org/10.4141/A98-099
  25. Miller, G.L. 1959. Use of dinitrossalicylic acid reagent for determination of reducing sugars. Anim. Chem. 31:426-428. https://doi.org/10.1021/ac60147a030
  26. Mroz, Z., Partridge. G., Mitchell. G. and Keal, H.D. 1986. The effects of oat hulls added to the basal ration for pregnant sows on reproductive performance, apparent digestibility, rate of passage and plasma parameters. J. Sci. Food Agric. 37:239-247. https://doi.org/10.1002/jsfa.2740370308
  27. Oboh, G., Akindahunsi, A.A. and Oshodi, A.A. 2002. Nutrient and anti-nutrient contents of Aspergillus niger-fermented cassava products (flour and gari). J. Food Compos. Anim. 15:617-622. https://doi.org/10.1016/S0889-1575(02)91065-3
  28. Pollman, D.S. 1986. Probiotics in pig diets. In: Advances in animal nutrition. (Ed. Haresign, W. and Cole, D.J.A.). Butterworths, London. pp. 193-205.
  29. Ramonet, Y., Meunier-Salaun, M.C. and Dourmad, J.Y. 1999. High-fiber diets in pregnant sows: digestive utilization and effects on the behavior of the animals. J. Anim. Sci. 77:591-599. https://doi.org/10.2527/1999.773591x
  30. Roso, R, Mendoza, G.D., gonzalez, S.S., Landosis, L, Barcena, R. and Crosby M.M. 2005. Effects of exogenous amylases from Bacillus licheniformis and Aspergillus niger on ruminal starch digestion and lamb performance. Anim. Feed Sci. Technol. 124:655-665. https://doi.org/10.1016/j.anifeedsci.2005.04.053
  31. Rymer, C. and Givens, D.I. 2002. Relationships between patterns of rumen fermentation measured in sheep and in situ degradability and the in vitro gas production profile of the diet. Anim. Feed Sci. Technol. 101:31-44. https://doi.org/10.1016/S0377-8401(02)00215-8
  32. SAS. 1996. $SAS/STAT^{\circledR}$ Software for PC. SAS Institute Inc., Cary, NC, USA.
  33. Scheuermann G.N, Maier J.C, Bellaver C. and Fialho F.D. 1995. Metionina elisina no desenvolvimento de frangos de corte. Revista Brasileira de Agrociencia. 1:75-86.
  34. Schoenherr, W.D., Stahly, T.S. and Cromwell, G.L. 1989. The Effects of dietary fat or fiber addition on yield and composition of milk from sows housed in a warm or hot environment. J. Anim. Sci. 67:482-495. https://doi.org/10.2527/jas1989.672482x
  35. Stahly, T.S. and Cromwell, G.L. 1986. Responses to dietary additions of fiber (alfalfa meal) in growing pigs housed in a cold, warm or hot thermal environment. J. Anim. Sci. 63:1870-1876. https://doi.org/10.2527/jas1986.6361870x
  36. Theodorou, M.K., Daivies, D.R., Nielsenm B.B., Lawrence, M.I.G. and Trinci, A.P.J. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. In: In vitro Techniques for Measuring Nutrient Supply to Ruminants. (Ed. Deaville, E.R., Owen, E., Adesogan, A.T., Remyer, C., Huntington, J.A. and Lawrence, T.L.J). Occasional publication, No. 22. British Society of Animal Science, UK. pp. 55-63.
  37. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  38. Underdahl, N.R., Torres-Median, A. and Doster, A.R. 1982. Effect of Streptococcus faecium C-68 in the control of Escherichia coli induced diarrhea in gnotobiotic pigs. J. Vet. Res. 43:2227-2232.
  39. Vandenberghe, L.P.S., Soccol, C.R., Pandey, A. and Lebeault, J.M. 2000. Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technol. 74:175-178. https://doi.org/10.1016/S0960-8524(99)00107-8
  40. Visek, W.J. 1978. The mode of growth promotion by antibiotics. J. Anim. Sci. 46:1447-1469. https://doi.org/10.2527/jas1978.4651447x
  41. Wilfart, A., Montagne, L., Simmins, P.H., Van Milgen, J. and Noblet, J. 2007. Sites of nutrient digestion in growing pigs: Effect of dietary fiber. J. Anim. Sci. 85:976-983. https://doi.org/10.2527/jas.2006-431
  42. Williams, A., Amat-Marco, M. and Collins, M.D. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
  43. Zoiopoulos, P.E., English, P.R. and Topps, J.H. 1982. High-fibre diets for ad libitum feeding of sows during lactation. Anim. Prod. J. Agric. Sci. 59:381-385.
  44. Zoiopoulos, P.E., English, P.R. and Topps, J.H. 1983. A note on intake and digestibility of a fibrous diet self fed to primiparous sows. Anim. Prod. J. Agric. Sci. 37:153-156. https://doi.org/10.1017/S0003356100001689

Cited by

  1. Influences of Seleniferous Whole Crop Barley Supplement on Growth Performance and Blood Characteristics in Growing Pigs vol.32, pp.1, 2012, https://doi.org/10.5333/KGFS.2012.32.1.39
  2. Influences of Feeding Seleniferous Whole Crop Barley on Growth Performance, Blood and Carcass Characteristics, and Tissue Selenium Deposition in Finishing Barrows vol.32, pp.6, 2012, https://doi.org/10.5851/kosfa.2012.32.6.828