DOI QR코드

DOI QR Code

Influence of Oxygen Flow Ratio on the Properties of In2O3 Thin Films Grown by RF Reactive Magnetron Sputtering

라디오파 반응성 마그네트론 스퍼터링으로 증착된 In2O3 박막의 특성에 산소 유량비의 변화가 미치는 효과

  • Kwak, Jun-Ho (Department of Electronic Materials Engineering, Silla University) ;
  • Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
  • 곽준호 (신라대학교 공과대학 전자재료공학과) ;
  • 조신호 (신라대학교 공과대학 전자재료공학과)
  • Received : 2010.02.24
  • Accepted : 2010.03.19
  • Published : 2010.05.30

Abstract

Indium oxide $(In_2O_3)$ thin films have been prepared on glass substrate by using radio-frequency reactive magnetron sputtering with changing the oxygen flow ratio. The substrate temperature was kept at a fixed value of $400^{\circ}C$, and the sputtering gas and reactive gas were supplied with argon and oxygen, respectively. The oxygen partial flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 10%, 20%, 30%, 40%, and 50%. The optical, electrical, and structural properties of the deposited thin films were investigated by using ultraviolet-visible-near infrared spectrophotometer, Hall measurement, and X-ray diffractometer and scanning electron microscopy. The $In_2O_3$ thin film deposited at 20% of oxygen flow ratio showed an average transmittance of 86% in the wavelength range of 430~1,100 nm, an electrical resistivity of $1.1{\times}10^{-1}{\Omega}cm$. The results show that the transparent conducting films with optimum conditions can be achieved by controlling the oxygen flow ratio.

산소 유량비의 변화가 라디오파 반응성 마그네트론 스퍼터링 방법으로 유리 기판 위에 증착된 $In_2O_3$ 투명 전도막의 특성에 미치는 효과를 조사하였다. 증착 온도는 $400^{\circ}C$로 고정하였으며, 스퍼터링 가스와 반응성 가스로 각각 아르곤과 산소 가스를 사용하였다. 산소 유량비는 공급되는 혼합 가스양에 대한 산소의 유량으로 선택하여 10%, 20%, 30%, 40%, 50%로 조절하였다. 증착된 박막의 광학, 전기, 구조적인 특성은 자외선-가시광 분광기, 홀 측정 장치, X-선 회절장치와 전자주사현미경으로 조사하였다. 산소 유량비 20%로 증착된 $In_2O_3$ 박막은 430~1,100 nm 파장 영역에서 86%의 투과율과 $1.1{\times}10^{-1}{\Omega}cm$의 비저항 값을 나타내었다. 실험 결과는 산소 유량비를 적절히 제어함으로써 최적의 조건을 갖는 투명 전도막을 성장시킬 수 있음을 제시한다.

Keywords

References

  1. S. Cho, Trans. Electr. Electron. Mater. 10, 185 (2009). https://doi.org/10.4313/TEEM.2009.10.6.185
  2. 김희수, 한국진공학회지 18, 384 (2009).
  3. T. Moriga, M. Mikawa, Y. Sakakibara, Y. Misaki, K. Murai, I. Nakabayashi, K. Tominaga, and J. B. Metson, Thin Solid Films 486, 53 (2005). https://doi.org/10.1016/j.tsf.2004.11.241
  4. V. Senthilkumar and P. Vickraman, Curr. Appl. Phys. 10, 880 (2010). https://doi.org/10.1016/j.cap.2009.10.014
  5. P. Malar, B. C. Mohanty, and S. Kasiviswanathan, Thin Solid Films 488, 26 (2005). https://doi.org/10.1016/j.tsf.2005.04.019
  6. Ch. Y. Wang, V. Cimalla, H. Romanus, Th. Kups, M. Niebelschutz, and O. Ambacher, Thin Solid Films 515, 6611 (2007). https://doi.org/10.1016/j.tsf.2006.11.079
  7. M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V. Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001). https://doi.org/10.1063/1.1410895
  8. F. O. Adurodija, L. Semple, and R. Bruning, Thin Solid Films 492, 153 (2005). https://doi.org/10.1016/j.tsf.2005.07.114
  9. V. Korobov, M. Leibovitch, and Y. Shapira, Appl. Phys. Lett. 65, 2290 (1994). https://doi.org/10.1063/1.112721
  10. Z. X. Mei, Y. Wang, X. L. Du, Z. Q. Zeng, M. J. Ying, H. Zheng, J. F. Jia, Q. K. Xue, and Z. Zhang, J. Cryst. Growth 289, 686 (2006). https://doi.org/10.1016/j.jcrysgro.2005.12.086
  11. H. Morikawa and M. Fujita, Thin Solid Films 359, 61 (2000). https://doi.org/10.1016/S0040-6090(99)00749-X
  12. W. Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D. Lee, and N. Yamazoe, Sens. Act. B 65, 312 (2000). https://doi.org/10.1016/S0925-4005(99)00419-0
  13. V. Brinzari, G. Korotcenkov, and V. Matolin, Appl. Surf. Sci. 243, 335 (2005). https://doi.org/10.1016/j.apsusc.2004.09.078
  14. B. Radha Krishna, T. K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, Opt. Mater. 15, 217 (2000). https://doi.org/10.1016/S0925-3467(00)00041-0
  15. T. Gao and T. Wang, J. Cryst. Growth 290, 660 (2006). https://doi.org/10.1016/j.jcrysgro.2006.01.046
  16. S. T. Tan, X. M. Sun, X. H. Zhang, S. J. Chua, B. J. Chen, and C. C. Teo, J. Appl. Phys. 100, 033502 (2006). https://doi.org/10.1063/1.2218468
  17. Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films 447-448, 56 (2004). https://doi.org/10.1016/j.tsf.2003.09.022
  18. 조신호, 한국진공학회지 18, 377 (2009).

Cited by

  1. Structural, Optical, and Electrical Properties of In2O3Thin Films Deposited on Various Buffer Layers vol.25, pp.7, 2012, https://doi.org/10.4313/JKEM.2012.25.7.491
  2. Effect of Electron Irradiation Energy on the Properties of In2O3Thin Films vol.25, pp.3, 2012, https://doi.org/10.12656/jksht.2012.25.3.134
  3. Investigation of Structural and Optical Characteristics of In2Se3Thin Films Fabricated by Thermal Annealing vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.136
  4. Effect of Annealing in a Nitrogen Atmosphere on the Properties of In2O3Films Deposited with RF Magnetron Sputtering vol.22, pp.1, 2012, https://doi.org/10.3740/MRSK.2012.22.1.024