DOI QR코드

DOI QR Code

Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars

한국 고유의 품종을 이용한 제초제 저항성 유채 개발

  • Kim, Hyo-Jin (Department of Bioenergy Science & Technology, Chonnam National University) ;
  • Lee, Hye-Jin (Department of Bioenergy Science & Technology, Chonnam National University) ;
  • Go, Young-Sam (Department of Plant Biotechnology, Chonnam National University) ;
  • Roh, Kyung-Hee (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Young-Hwa (Bioenergy Crop Research Center and National Institute of Crop Science, Rural Development Administration) ;
  • Jang, Young-Seok (Bioenergy Crop Research Center and National Institute of Crop Science, Rural Development Administration) ;
  • Suh, Mi-Chung (Department of Bioenergy Science & Technology, Chonnam National University)
  • 김효진 (전남대학교 바이오에너지공학과) ;
  • 이혜진 (전남대학교 바이오에너지공학과) ;
  • 고영삼 (전남대학교 식물생명공학부) ;
  • 노경희 (농촌진흥청 국립농업과학원) ;
  • 이영화 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 장영석 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 서미정 (전남대학교 바이오에너지공학과)
  • Received : 2010.08.31
  • Accepted : 2010.09.03
  • Published : 2010.09.30

Abstract

An interest in the production of seed-oil based fuel and raw materials, which comes from renewable plant sources, has been intrigued by the phenomenon of global warming and shortage of fossil fuels. Rapeseed (Brassica napus) is the most important oilseed crop, which produces seeds with 40% oil. It is desirable to develop genetically modified rapeseed producing oils, which can be easily converted to biodiesel. As an initial step for development of genetically modified rapeseed for the production of biofuels or bio-based materials, Korean rapeseed cultivars, Naehan, Youngsan, Tammi and Halla, were analyzed. Four Korean rapeseed cultivars produce 32 to 40% oil of seed dry weight, which is rich in oleic acid (more than 60 mole%). The cotyledonary petioles of rapeseed cultivar, Halla, were transformed using Agrobacterium tumefaciens strain GV3101, carrying the uidA gene encoding $\beta$-glucuronidase (GUS) as a reporter gene and the phosphinothricin acetyltransferase (PAT) gene as a selectable marker. The stable integration of PAT gene in the genome of transgenic rapeseeds was confirmed by PCR analysis. Expression of uidA gene in various rapeseed organs was determined by fluorometric assay and histochemical staining. Transformation efficiency of a Korean rapeseed Halla cultivar was 10.4%. Genetic inheritance of transgenes was confirmed in $T_2$ generation.

화석에너지의 고갈과 지구 온난화 현상으로 인해 재생 가능한 식물자원으로부터 바이오에너지를 얻고자 하는 관심이 높아지고 있다. 이에 바이오디젤의 원료로 사용 되기 적합한 형질전환이 된 유채를 개발하기 위한 첫 단계로 한국 고유 유채 품종을 이용한 형질전환 체계를 구축하였다. 내한, 영산, 탐미, 한라 유채의 종자를 분양 받아 지방산 분석을 실시한 결과, 종자의 약 32-40% 식물성 오일이 포함되어 있었고, 그 중 올레인산의 함량은 60mole% 이상 존재하는 것으로 확인되었다. 그 중 오일 함량 및 올레인산 함량이 높고, 형질전환 효율이 비교적 높은 한라 유채품종이 그리고 $\beta$-glucuronidase (GUS)와 phosphinothricin acetyltransferase (PAT) 유전자가 포함된 pCAM-BIA3301 벡터가 도입된 Agrobacterium tumefaciens GV3101균주가 형질전환에 사용되었다. 형질전환이 된 유채 식물체는 제초제에 대한 내성, PCR을 이용한 PAT 유전자의 도입 여부 및 GUS 활성 분석을 통하여 선별하였다. 그 결과 한라 유채의 경우, 10. 4% 형질전환 효율을 보였고, 제초제 저항성이 다음 세대 ($T_1$ 식물체)로 안정되게 유전됨을 확인하였다. 이러한 연구는 바이오디젤 원료로 사용될 다양한 유채 품종에 교배를 통해 제초제 저항성 유전자를 쉽게 도입할 수 있는 가능성을 제시하였다.

Keywords

References

  1. Chapel M, Glimelius K (1990) Temporary inhibition of cell wall synthesis improves the transient expression of the GUS gene in Brassica napus mesophyll protoplasts. Plant Cell Rep 9:105-108
  2. Durrett TP, Benning C, Ohlrogge JB (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593-607 https://doi.org/10.1111/j.1365-313X.2008.03442.x
  3. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229-1231 https://doi.org/10.1126/science.227.4691.1229
  4. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ${\beta}-glucuronidase$ as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907
  5. Khan EU, Liu JH (2009) Plant biotechnological approaches for the production and commercialization of transgenic crops. Biotechnol & Biotechnol Eq pp 23
  6. Kim JH, Song HS, Jee SM, Ryu TH, Kim DH, Kim HY (2005) Qualitative PCR Detection of GM rices (Milyang 204 and Iksan 483) developed in Korea. J Korean Soc Appl Biol Chem 48:335-338
  7. Kim KH, Lee JE, Ha SH, Hahn BS, Park JS, Lee MH, Jung CS, Kim YH (2008) Perilla transformation using selection markers containing antibiotics and basta. Kor J Plant Biotechnol 35:299-306 https://doi.org/10.5010/JPB.2008.35.4.299
  8. Kim KM, Sohn JK, Chung JD (1997) Transformation of Brassica napus via Agrobacterium vector : plant regeneration and progeny analysis. Kor Plant Tissue Culture 24:269-272
  9. Kita Y, Hanafy MS, Deguchi M, Hasegawa H, Terakawa T, Kitamura K, Ishimoto M (2009) Generation and characterization of herbicide-resistant soybean plants expressing novel phosphinothricin N-acetyltransferase genes. Breed Sci 59:245-251 https://doi.org/10.1270/jsbbs.59.245
  10. Klee HJ, Rogers SG (1989) Plant gene vectors and genetic transformation : plant transformation systems based on the use of Agrobacterium tumefaciens. In: Vasil IK, (eds). Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Academic Press, Orlando, Florida, pp 1-23
  11. Longdou L, Gao WJ, Wang J, Duan H, Li R (2005) Expression of chitinase gene in transfgenic rape plants. Analele Stiintifice ale Universitatii “Al.I. Cuza” Iasi,Genetica si biologie moleculara, Tom V, pp 167-172
  12. Li S, Zhao D, Wu Y, Tian X (2009) A simplified seed transformation method for obtaining Brassica napus plants. Agricultural sciences in China 8:658-663 https://doi.org/10.1016/S1671-2927(08)60261-8
  13. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238-242 https://doi.org/10.1007/BF00778542
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Neuhaus G, Spangengberg G, Scheid OM, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75:30-36
  16. Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821-826 https://doi.org/10.1104/pp.104.3.821
  17. Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobacterium-mediated Transformation protocol to overcome necrosis in elite Australian Brassica juncea lines. Plant Mol Biol Rep 24:103a-103i https://doi.org/10.1007/BF02914050
  18. Prem LB, Mohan BS (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols 3:181-189 https://doi.org/10.1038/nprot.2007.527
  19. Radke SE, Andrews BM, Moloney MM, Crouch ML, Krid JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685-694
  20. Rucker B, Robbelen G (1996) Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breeding 115:226-230 https://doi.org/10.1111/j.1439-0523.1996.tb00908.x
  21. Scarth R, McVetty PBE, Rimmer SR, Stefansson BR (1988) Stellar low linolenic-high linolenic acid summer rape. Can J Plant Sci 68:509-511 https://doi.org/10.4141/cjps88-061
  22. Schroder-Pontoppidan M, Dixelius CH, Glimelius K (2000) Effects of Agrobacterium tumefaciens-mediated transformation and tissue culture on strorage lipids in Brassica napus. Euphytica 115:181-190 https://doi.org/10.1023/A:1004026702787
  23. Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan RB, Gruissem W, Jones RL, (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Rockville, MD, pp 456-527
  24. Terada R, Ko S (1990) Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389-392 https://doi.org/10.1007/BF00391743
  25. Vanjildorj E, Bae TW, Song IJ, Kim KM, Lim YP, Lee HY (2008) Herbicide-resistant Transgenic Mongolian Bentgrass (Agrostis mongolica Roshev.) obtained by Agrobacterium-mediated transformation. Korean J Breed Sci 40:128-135
  26. Weigel D, Glazebrook J (2002) Adapted from Arabidopsis: A Laboratory Manual. In: Weigel D, Glazebrook J, (eds), CSHL Press, Cold Spring Harbor, NY, USA
  27. Zhang Y, Singh MB, Swoboda I, Bhalla PL (2005) Agrobacteriummediated transformation and generation of male sterile lines of Australian canola. Aust J Agri Res 56:353-361 https://doi.org/10.1071/AR04175

Cited by

  1. Lipid Composition of Korean Rapeseed (Brassica napus L.) Cultivar and Antioxidant Capacity of Phenolic Extract vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1817
  2. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents vol.30, pp.10, 2011, https://doi.org/10.1007/s00299-011-1095-x
  3. Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop vol.40, pp.4, 2013, https://doi.org/10.5010/JPB.2013.40.4.185
  4. Current status of tissue culture and genetic transformation systems in oilseed rape plants (Brassica napus L.) vol.37, pp.4, 2010, https://doi.org/10.5010/JPB.2010.37.4.379
  5. Production of Transgenic Plants in Brassica napus Winter Cultivar 'Youngsan' vol.54, pp.1, 2011, https://doi.org/10.3839/jabc.2011.005