Estimates of Basin-Specific Oxygen Utilization Rates (OURs) in the East Sea (Sea of Japan)

동해 각 분지의 수층내 산소 소모율 추정

  • Kim, Il-Nam (Marine Science Institute, the University of Texas at Austin) ;
  • Min, Dong-Ha (Marine Science Institute, the University of Texas at Austin) ;
  • Lee, Tong-Sup (Department of Marine System Science, Pusan National University)
  • 김일남 (오스틴 텍사스 주립대학교 해양학과) ;
  • 민동하 (오스틴 텍사스 주립대학교 해양학과) ;
  • 이동섭 (부산대학교 해양시스템과학과)
  • Received : 2010.05.06
  • Accepted : 2010.05.29
  • Published : 2010.05.30

Abstract

The oxygen utilization rate (OUR) is one of the crucial parameters for ocean carbon cycling and climate models. However, parameterization of OUR in the East Sea (Sea of Japan) is yet to be established. We estimated the basin-specific OURs in the East Sea and fitted them with exponential functions with depth by using pCFC- 12 age and apparent oxygen utilization (AOU) measured in summer 1999. The estimated OURs are higher in the upper water column and decrease with depth, in general. The vertical distributions of the estimated OURs in the Western and Eastern Japan Basins (WJB & EJB) are very similar. The OURs in the Ulleung Basin (UB) varied greatly depending on whether the surface layer (0~200 m) data are included in the OUR estimate or not. Apparently, weaker oxygen consumption occurs in the deep layer of Yamato Basin (YB). The ranges of the OURs between 200 m and 2000 m at WJB, EJB, UB, and YB are 8.15~0.83, 8.11~0.68, 5.29~0.73, and 7.31~0.06 ${\mu}mol$ $kg^{-1}$ $yr^{-1}$, respectively. Consideration of the wintertime surface water oxygen disequilibrium condition in estimating the OUR will be necessary in the future study.

해양환경에서의 산소 소모율에 관한 자료는 생지화학적인 탄소 순환뿐만 아니라 기후 모델을 구성하는 중요한 변수들 중에 하나이다. 그러나 동해의 산소 소모율 자료는 모델에 이용될 수 있는 하나의 변수로써는 아직 구체적으로 정립되지 못했다. 해수의 물리적인 특성이 서로 다른 동해의 각 분지에서 깊이에 따른 수층내 산소 소모율 분포를 1999년 여름에 관측된 겉보기 산소 소모량과 프레온-12 분압 나이를 이용하여 계산한 후, 200~2000 m 수심구간에서 지수함수로 표현하였다. 계산된 산소 소모율은 일반적으로 상층 수심에서 높고 수심이 깊어짐에 따라 감소하는 경향을 보였다. 산소 소모율은 서부와 동부 일본 분지에서 뚜렷한 차이를 보이지 않았고, 울릉분지는 표층 영 역(수심 0~200 m)을 포함했을 때와 그렇지 않았을 때 추정치의 차이가 컸으며, 야마토 분지는 저층에서 다른 분지에 비해서 산소 소모율이 굉장히 낮은 값을 보였다. 수심 200~2000 m 사이에서 산소 소모율은 서부 일본 분지에서 8.15~0.83, 동부 일본분지에서 8.11~0.68, 울릉 분지에서 5.29~0.73, 야마토 분지에서 7.31~0.06 ${\mu}mol$ $kg^{-1}$ $yr^{-1}$을 보였다. 향후, 기후 변화와 관련하여 겨울철 표층해수역의 산소 불포화도를 고려한 산소 소모율 추정이 요구된다.

Keywords

References

  1. 김일남, 이동섭, 2004. OPM 방법으로 분석한 하계 통해의 수계 특성. Ocean and Polar Res., 26: 581-594. https://doi.org/10.4217/OPR.2004.26.4.581
  2. 김재연, 강동진, 김응, 조진형, 이창래, 이동섭, 2003. 상자 모형으로 추정한 동해의 생물 펌프. 한국해양학회지, 8: 295-306.
  3. 김철호, 김 구, 1983. 한국 동해안에 출현하는 냉수괴의 특성과 기원. 한국해양학회지, 18: 73-83.
  4. Chen, C.T.A., A.S. Bychkov, S.L. Wang and G.Yu. Pavlova, 1999. An anoxic Sea of Japan by the Year 2200? Mar. Chem., 67: 249-265. https://doi.org/10.1016/S0304-4203(99)00074-2
  5. Chen, C.T.A., GC. Gong, S.L. Wang and A.S. Bychkov, 1996. Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system. Geophy. Res. Lett., 23: 1785-1788. https://doi.org/10.1029/96GL01676
  6. Gamo, T. and Y. Horibe, 1983. Abyssal circulation in the Japan Sea. J. Oceanogr. Soc. Japan, 39: 220-230. https://doi.org/10.1007/BF02070392
  7. Hahm, D. and K.-R. Kim, 2008. Observation of bottom water renewal and export production in the Japan Basin, East Sea using tritium and helium isotopes. Ocean Sci., J., 43: 39-48. https://doi.org/10.1007/BF03022430
  8. Hyun J.-H., D. Kim, C.-w. Shin, J.-H. Noh, E.-J. Yang, J.-S. Mok, S.-H. Kim, H.-C. Kim and S. Yoo, 2009. Enhanced phytoplnkton and bacterioplankton production coupled to coastal upwelling and an anticylonic eddy in the Ulleung basin, East Sea. Aqu. Micro. Ecol., 54: 45-54.
  9. Jenkins, W.J. and J.C. Goldman, 1985. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res., 43: 465-491. https://doi.org/10.1357/002224085788438702
  10. Jenkins, W.J., 1982. Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature, 300: 246-248. https://doi.org/10.1038/300246a0
  11. Jenkins, W.J., 2008. The biogeochemical consequences of changing ventilation in the Japan/East Sea. Mar. Chem., 108: 137-147. https://doi.org/10.1016/j.marchem.2007.11.003
  12. Kang, D.-J., J.-Y. Kim, T. Lee, and K.-R. Kim, 2004. WilI the East/ Japan Sea become an anoxic sea in the next centurγ? Mar. Chem., 91: 77-84. https://doi.org/10.1016/j.marchem.2004.03.020
  13. Kang, D.-J., K.-E. Lee and K.-R. Kim, 2003. Recent development in chemical oceanography of the East (Japan) Sea with an emphasis on CREAMS finding: A review. Geosci. J., 7: 179-197. https://doi.org/10.1007/BF02910222
  14. Kim, I.-N., D.-H. Min, T. Lee and D. H. Kim, 2010. Investigation of the physicochemical features and mixing of East/Japan Sea Intermediate Water: An isopycnic analysis approach. J. Mar. Res., submitted.
  15. Kim, K.-R., G. Kim, K. Kim, V. Lobanov, V. Ponomarev and A. SaIyuk, 2002. A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea. Geophys. Res. Lett., 29, doi:10.1029/2001GL014498.
  16. Kim, K.-R., T.S. Rhee, K. Kim and J.Y. Chung, 1991b. ChemicaI characteristics of the East Sea Intermediate Water in the Ulleung Basin. J. Korean Soc. Oceanogr., 26: 278-290.
  17. Kim, K. and J.Y. Chung, 1984. on the saIinity minimum and dissolved oxygen maximum layer in the East Sea (Sea of Japan). In: Ocean hydro-dynamics of the Japan and East China Seas, edited by Ichiye, T., Elsevier Amsterdam, pp. 55-65.
  18. Kim, K., K.-I. Chang, D.-J. Kang, Y.H. Kim and J.-H. Lee, 2008. Review of recent findings on the water masses and circulation in the East Sea (Sea of Japan). J. Oceanogr., 64: 721-735. https://doi.org/10.1007/s10872-008-0061-x
  19. Kim, K., K.-R. Kim, D.-H. Min, Y. Volkov, J.-H. Yoon and M. Takematsu, 2001. Warming and Structural Changes in the East Sea (Japan Sea): A clue to future changes in Global Oceans? Geophys. Res. Lett., 28: 3293-3296. https://doi.org/10.1029/2001GL013078
  20. Kim, K., K.-R. Kim, J.Y. Chung, H.S. Yoo and S.G. Park, 1991a. Characteristics of physical properties in the Ulleung Basin. J. Korean Soc. Oceanogr., 26: 83-100.
  21. Kim, K.,K.-R. Kim, Y.G. Kim, Y.K. Cho, J.Y. D.-J. Kang, M. Takematsu and Y. Volkov, 2004. Water mass and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61: 157-174. https://doi.org/10.1016/j.pocean.2004.06.003
  22. Kim, Y.-G and K. Kim, 1999. Intermediate Waters in the East/Japan. Sea. J. Oceanogr., 55: 123-132. https://doi.org/10.1023/A:1007877610531
  23. Lee, T. and I.-N. Kim, 2003. Chemical Imprints of the Upwelled Waters off the Coast of the Southern East Sea of Korea. J. Oceanol. Soc. Korea., 38(3): 101-110.
  24. Lee, T. J.-H. Hyun, J.S. Mok and D. Kim 2008. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin East/Japan Sea. Geo-Mar. Lett., 28: 153-159. https://doi.org/10.1007/s00367-007-0097-8
  25. Martin, J.H., G.A. Knauer, D.M. Karl and W.W. Broenkow, 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res., 34: 267-285. https://doi.org/10.1016/0198-0149(87)90086-0
  26. Min, D.-H. and M.J. Warner, 2005. Basin-wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluoro-carbon tracers. Deep Sea Res. II, 52: 1580-1616. https://doi.org/10.1016/j.dsr2.2003.11.003
  27. Min, D.-H., 1999. Studies of large-scale intermediate and deep water circulation and ventilation in the North Atlantic, South Indian and Northeast Pacific Oceans, and in the East Sea (Sea of Japan), using chlorofluorocarbons as tracers. Ph.D. Thesis, University of California San Diego, La Jolla, 170 pp.
  28. Min, D.-H., K.-R. Kim and R.F. Weiss, 2002. Decadal-scale changes of ventilation rates in the East Sea (Sea of Japan): A study by the chlorofluorocarbons and a simple model, CREAMS/PICES Symposium, Seoul, Korea.
  29. Poole, R. and M. Tomczak, 1999. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep-Sea Res. I, 46: 1895-1921. https://doi.org/10.1016/S0967-0637(99)00025-4
  30. Postlethwaite, C.F., E.J. Rohling, W.J. Jenkins and C.F. WaIker, 2005. A tracer study of ventilation in the Japan/East Sea. Deep-Sea Res. II, 52: 1684-1704. https://doi.org/10.1016/j.dsr2.2004.07.032
  31. Senjyn, T., 1999. The Japan Sea Intermediate Water; its characteristics and circulation. J. Oceanogr., 55: 111-122. https://doi.org/10.1023/A:1007825609622
  32. Senjyu, T., H.-R. Shin, J.-H. Yoon, Z. Nagano, H.-S. An, S.-K. Byun and C.-K. Lee, 2005. Deep flow field in the Japan/East Sea as deduced from direct current mcasurements. Deep-Sea Res. II, 52: 1726-1741. https://doi.org/10.1016/j.dsr2.2003.10.013
  33. Seung, Y.H. and K. Kim, 1993. A munerical modeling of the East Sea Circulation. J. Korean Soc. Oceanogr., 28: 292-304.
  34. TaIley, L.D., D.-H. Min, V.B. Lobanov, V.A. Luchin, V.I. Ponomarev, A.N. SaIyuk, A.Y. Shcherbina, P.Y. Tishchenko and I. Zhabin, 2006. Japan/East Sea water masses and their relation to the sea's circulation. Oceanogr., 19: 32-49. https://doi.org/10.5670/oceanog.2006.42
  35. Talley, L.D., P. Tischenko, V. Luchin, A. Nedashkovskiy, S. SagaIaev, D.-J. Kang, M. Warner and D.-H. Min, 2004. Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Prog. Oceanogr., 61: 277-348.
  36. Talley, L.D., Y. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko, I. Zhabin and S. Riser, 2003. Deep convection and brine rejection in the Japan Sea. Geophys. Res. Lett., 30, 1159, doi: 10.1029/ 2002GL016451.
  37. Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito and M. Nakajima, 1993. Dynamic of the Japan Sea deep water studied with chemical and radiochemicaI tracers. In: T. Teramoto (Editor), Deep Ocean Circulation, Physical and Chemical Aspects, Elsevier Science Publishers, B.V., 105-119.
  38. Uda, M., 1934. The results of simultaneous oceangraphical ìnvestigations in the Japan Sea and its adjacent waters in May and June, 1932 (in Japanese). J. Imp. Fish. Exp. Sta., 5: 57-190.
  39. Weiss, R.F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res., 17: 721-735.
  40. Wyrtki, K., 1962. The oxygen minima in relation to ocean circulation. Deep-Sea Res., 9: 11-23.
  41. Yoo, S. and J. Park, 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan?. J. Mar. Sys., 78: 301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014
  42. Yoon, J.-H. and H. Kawamura, 2002. The formation and circulation of the intermediate water in the Japan Sea. J. Oceanogr., 58: 197-211. https://doi.org/10.1023/A:1015893104998