Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine

송천광산의 풍화광미 내 중금속 및 비소 거동 특성

  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2010.06.01
  • Accepted : 2010.06.18
  • Published : 2010.06.30

Abstract

Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

광물학적 지구화학적 방법을 이용하여 송천 금은광산 광미 내 중금속 및 비소의 거동특성에 대해 연구하였다. 광미 내 광물조성은 X-선 회절분석, 에너지 분산분광분석, 전자탐침미세현미분석(EPMA)을 이용하여 조사하였고, 중금속과 비소의 농도와 화학적 존재형태는 각각 왕수분해법과 연속추출법으로 분석하였다. 광물학적 연구결과, 방연석, 섬아연석, 황철석, 석영, 그리고 스코로다이트로 구성된 수지상 광물집합체가 관찰되었으며, 특히 스코로다이트는 기질의 형태로 나타났다. 이러한 광물집합체 내 다양한 황화광물의 풍화반응 정도를 평가하고자 EPMA 분석을 실시하였으며 그 결과, 유비철석, 방연석, 섬아연석, 황철석 순으로 풍화반응성이 높은 것으로 평가되었다. 방연석의 풍화는 이차광물로 이루어진 누대구조가 특징적으로 관찰되었으며, 이러한 누대구조에서 다량의 앵글레사이트와 소량의 보이단타이트를 관찰하였다. 그리고 유비철석은 거의 모두 스코로다이트로 변질되어 스코로다이트가 기질의 형태로 존재하였으며 이러한 기질 내에서 유비철석보다 풍화반응성이 떨어지는 방연석, 섬아연석, 황철석 등이 관찰되었다. 유비철석으로부터 스코로다이트로 변질되는 과정 중 일부 비소는 용출되어 주변 환경에 악영향을 끼쳤을 것으로 판단된다. EPMA 정량분석결과로 볼 때, 이러한 스코로다이트는 안정도가 비교적 높음을 알 수 있었으며, 또한 안정한 스코로다이트는 광미를 피복하여 광미 내 다른 일차광물들의 풍화를 억제하는 것으로 생각된다. 이러한 원인으로 송천광미가 지표환경에 장기간 노출되었음에도 불구하고 초기 풍화진행단계의 특성을 보이는 것으로 판단된다. 본 연구의 광물학적, 지구화학적 연구결과를 종합해보면 현재 납과 비소가 이동성이 높은 형태로 존재하기 때문에 광미가 지표에 계속 노출되어 풍화반응이 지속된다면 그러한 유해원소들의 용출 가능성이 클 뿐만 아니라 스코로다이트의 안정도가 감소하여 비소의 재용출 가능성도 높아 송천광산의 환경위해성이 큰 것으로 판단된다.

Keywords

References

  1. 대한광업진흥공사 (1973) 한국의 광상: 금은편. 5, 791.
  2. 이진수, 전효택, 김경웅, 김주용 (2003) 폐금속광산 지역에서의 독성중금속에 대한 위해성평가. 한국지구시스템공학회지, 40, 264-273.
  3. 임혜숙, 이진수, 전효택 (2004) 송천 Au-Ag 폐광산 주변 지역의 중금속 오염과 인체 위해성 평가. 대한자원환경지질학회 2004년도 춘계학술발표회집, 202-207.
  4. 정명채, 정문영 (2006) 국내 휴폐광금속광산의 환경오염평가 및 향후 관리 방안. 한국지구시스템공학회지, 43,383-394.
  5. Blowes, D.W. and Jambor, J.L. (1990) The pore water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Geochemistry, 5, 327-346. https://doi.org/10.1016/0883-2927(90)90008-S
  6. Bluteau, M.C. and Demopoulos, G.P. (2007) The incongruent dissolution of scorodite-solubility, kinetics and mechanism. Hydrometallurgy, 87, 163–177.
  7. Buckly, A.N. and Walker, W. (1988) The surface composition of arsenopyrite exposed to oxidizing environments. Applied Surface Science, 35, 227-240. https://doi.org/10.1016/0169-4332(88)90052-9
  8. Courtin-Nomade, A., Bril, H., Neel, C., and Lenain, J. (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguialès, Aveyron, France. Applied Geochemistry, 18, 395-408. https://doi.org/10.1016/S0883-2927(02)00098-7
  9. Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, $FeAsO_{4}$.$2H_{2}O$. American Mineralogist, 70, 838-844.
  10. Inskeep, W.P., McDermott, T.R., and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes, In: W.T. Frankenberger Jr. (ed.), Environmental Chemistry of Arsenic, Marcel Dekker, New York, 183-215.
  11. Jambor, J.L. and Dutrizac, J.E. (1983) Beaverite-plumbojarocite solid solution. Canada. Geochemistry, 21, 101-113.
  12. Jambor, J.L. and Blowes, D.W. (1994) Environmental geochemistry of sulfide Mine wastes. Mineralogical association of Canada. Shot Course, 22, 438.
  13. Jeong, G.Y. and Lee, B.Y. (2003) Secondary mineralogy and microtextures of weathered sulfides and manganoan carbonates in mine waste-rock dumps, with implications for heavy-metal fixation. American Mineralogist, 88, 1933-1942. https://doi.org/10.2138/am-2003-11-1236
  14. Lee, K.Y., Kim, K.W., and Kim, S.O. (2010) Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environmental Geochemistry and Health, 32, 31-44. https://doi.org/10.1007/s10653-009-9263-4
  15. Liu Y.G., Zhou M., Zeng G.M., Li X., Xu W.H., and Fan T. (2007) Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. Journal of Hazardous Materials, 141, 202-208. https://doi.org/10.1016/j.jhazmat.2006.06.113
  16. Mineral Database (2010) http://www.webmineral.com
  17. Morin, G. and Calas, G. (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97-101. https://doi.org/10.2113/gselements.2.2.97
  18. Monn, K.A. and Hutt, N.M. (1997) Environmental geoche mistry of mine site drainage practical theory and case studies; Description and assesment of drainage chemistry. MDAG Publishing, 63-138.
  19. Nesbitt, H.W., Muir, I.J., and Pratt, A.R. (1995) Oxidation of arsenopyrite by air, air-saturated, distilled water, implications for mechanism of oxidation. Geochimica et Cosmochimica Acta, 59, 1773-1786. https://doi.org/10.1016/0016-7037(95)00081-A
  20. Peter, D. and Michal, F. (2009) Secondary arsenic minerals in the environment: A review. Enviroment. International. 35, 1243-1255. https://doi.org/10.1016/j.envint.2009.07.004
  21. Papassiopi, N., Vircikova, E., Nenov, V., Kontopoulos, A., and Molnar, L. (1996) Removal and fixation of arsenic in the form of ferric arsenates; three parallel experimental studies. Hydrometallurgy, 41, 243-253. https://doi.org/10.1016/0304-386X(95)00059-P
  22. Plumlee, G.S. (1998) The environmental geology of mineral deposits. In: Plumlee G.S. and Logsdon, M.J. (eds.), The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques, and Health Issues. Reviews in Economic and Environmental Geochemistry, 6A, 71-116.
  23. Pokrovski, G.S., Kara, S., and Roux, J. (2002) Stability and Solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, 66, 2361-2378. https://doi.org/10.1016/S0016-7037(02)00836-0
  24. Richardson, S. and Vaughan, D.J. (1989) Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineralogical Magazine, 53, 223-229. https://doi.org/10.1180/minmag.1989.053.370.09
  25. Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., and Rincón, J. (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106-1116. https://doi.org/10.1016/j.jenvman.2008.04.007
  26. Roussel, C., Neel, X., and Bril, H. (2000) Mineral control ling arsenic and lead solubility in an abandoned gold mine tailing. The Science of The Total Environment, 263, 209-219. https://doi.org/10.1016/S0048-9697(00)00707-5
  27. Sam, R. and Isablle, K.B. (1999) Magnetic susceptibilities of minerals. U.S. Geological Survey, 99-529.
  28. Sheoran, A.S. and Sheoran, V. (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105-116. https://doi.org/10.1016/j.mineng.2005.08.006
  29. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  30. Sun, X. and Doner, H. (1998) Adsorption and oxidation of arsenite on goethite. Soil Science, 163, 278-287. https://doi.org/10.1097/00010694-199804000-00003
  31. Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844-851. https://doi.org/10.1021/ac50043a017
  32. Ure, A.M. (1995) Method of analysis for heavy metals in soils. In: Alloway, B. J.(eds.), Heavy metal in soils. Chapman and Hall, Glasgow, 55-68.
  33. Wang, S. and Mulligan, C.N. (2006) Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. The Science of the Total Environment, 366, 701-721. https://doi.org/10.1016/j.scitotenv.2005.09.005
  34. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.D. (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimca Acta, 436, 309-323. https://doi.org/10.1016/S0003-2670(01)00924-2