DOI QR코드

DOI QR Code

Effects of Amount of Myopic Correction on Long-term Changes in Higher-order Wavefront Aberrations in ASA-PRK

고등각막표면굴절교정레이저절제술에서 근시교정량이 고위수차의 장기간 변화에 미치는 효과

  • Kim, Jin-Seon (Department of Ophthalmology, Yeungnam University College of Medicine) ;
  • Lee, Sang-Bumm (Department of Ophthalmology, Yeungnam University College of Medicine)
  • 김진선 (영남대학교 의과대학 안과학교실) ;
  • 이상범 (영남대학교 의과대학 안과학교실)
  • Received : 2010.01.18
  • Accepted : 2010.06.13
  • Published : 2010.09.15

Abstract

Purpose: To evaluate the effects of the amount of myopic correction on long-term changes in higher-order wavefront aberrations (HOAs) in advanced surface ablation-photorefractive keratectomy (ASA-PRK). Methods: The 193 eyes of 101 patients who underwent ASA-PRK were divided into two groups according to the amount of myopic correction by the median value (Group 1 ${\leq}$ -4.37D, 97 eyes, mean -3.26 ${\pm}$ 0.77D; Group 2 > -4.37D, 96 eyes, mean -5.77 ${\pm}$ 1.00D). Wavefront aberrometry was performed to measure total HOA, coma, trefoil, and spherical aberration preoperatively and at 1, 3, 6, 12, and 24 months after ASA-PRK. Statistical analysis was performed to compare changes in all HOAs between the two groups. Results: Each magnitude of total HOA, coma, and spherical aberration except trefoil significantly increased at 1, 3, 6, 12, and 24 months postoperatively in each group (p<0.05), and the increases were statistically significantly higher in group 2 compared to those of group 1 (p<0.05). The amount of changes in all HOAs except trefoil revealed that statistically significantly higher increases in group 2 compared to those of group 1 were determined only in the short-term period (up to 1 month, p<0.05), but not in the medium-term (1 to 6 months) or long-term periods (6 to 24 months). Conclusions: Postoperative total HOA, coma, and spherical aberration significantly increased in both groups, and these increases in surgery-induced HOAs were significantly higher in group 2 (> -4.37D). Increases in ASA-PRK-induced HOAs primarily originated from short-term changes in the postoperative one-month period and did not return to the preoperative level during the postoperative two-year period.

목적: 고등각막표면굴절교정레이저절제술(ASA-PRK)에서 근시교정량에 따른 술 후 고위수차의 장기간 변화를 알아보고자 하였다. 대상과 방법: ASA-PRK를 시행한 101명 193안을 근시교정량의 중앙값에 따라 두 군으로 나누었다(1군 ${\leq}$ -4.37D, 97안, 평균 -3.26 ${\pm}$ 0.77D; 2군 >-4.37D, 96안, 평균 -5.77 ${\pm}$ 1.00D). 술 전과 술 후 1, 3, 6, 12, 24개월에 수차계로 총파면고위수차, 코마, 세조각 및 구면수차를 측정하였고, 그 변화를 통계적으로 분석하였다. 결과: 세조각수차를 제외한 총파면고위수차, 코마 및 구면수차는 각 군별로 술 후 1, 3, 6, 12, 24개월에 술 전에 비해 증가하였고(p<0.05), 그 증가는 1군보다 2군이 더 심하였다(p<0.05). 그 수차의 변화량은 단기간(1개월까지)에만 1군보다 2군이 높았고(p<0.05), 중기간(1~6개월)과 장기간(6~24개월)에서는 두 군 간 차이가 없었다. 결론: 술 후 총파면고위수차, 코마 및 구면수차는 근시교정량이 많은 2군에서 더 높은 증가를 보였다. 그 증가는 술 후 1개월까지의 단기간 변화에 기인하였으며 2년 동안 술 전 값으로 회귀 없이 유지되었다.

Keywords

References

  1. Trattler WB, Barnes SD. Current trends in advanced surface ablation. Curr Opin Ophthalmol 2008;19:330-4. https://doi.org/10.1097/ICU.0b013e3283034210
  2. Randleman JB, Loft ES, Banning CS, et al. Outcomes of wavefront- optimized surface ablation. Ophthalmology 2007;114:983-8. https://doi.org/10.1016/j.ophtha.2006.10.048
  3. Ghadhfan F, Al-Rajhi A, Wagoner MD. Laser in situ keratomileusis versus surface ablation: visual outcomes and complications. J Cataract Refract Surg 2007;33:2041-8. https://doi.org/10.1016/j.jcrs.2007.07.026
  4. Stonecipher K, Ignacio TS, Stonecipher M. Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability. Curr Opin Ophthalmol 2006;17:368-72. https://doi.org/10.1097/01.icu.0000233957.88509.2d
  5. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol 1983;96:710-5.
  6. Gartry DS, Kerr Muir MG, Marshall J. Excimer laser photorefractive keratectomy. 18-month follow-up. Ophthalmology 1992; 99:1209-19.
  7. Tengroth B, Epstein D, Fagerholm P, et al. Excimer laser photorefractive keratectomy for myopia. Clinical results in sighted eyes. Ophthalmology 1993;100:739-45.
  8. Moreno-Barriuso E, Lloves JM, Marcos S, et al. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 2001;42:1396-403.
  9. Oshika T, Klyce SD, Applegate RA, et al. Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 1999;127:1-7. https://doi.org/10.1016/S0002-9394(98)00288-8
  10. Marshall J, Trokel SL, Rothery S, Krueger RR. Long-term healing of the central cornea after photorefractive keratectomy using an excimer laser. Ophthalmology 1988;95:1411-21.
  11. Seiler T, Holschbach A, Derse M, et al. Complications of myopic photorefractive keratectomy with the excimer laser. Ophthalmology 1994;101:153-60.
  12. Lee SB, Chung MS. Advanced Surface Ablation-Photorefractive Keratectomy (ASA-PRK): Safety and clinical outcome for the correction of mild to moderate myopia with a thin cornea. J Korean Ophthalmol Soc 2006;47:1274-86.
  13. Oliver KM, Hemenger RP, Corbett MC, et al. Corneal optical aberrations induced by photorefractive keratectomy. J Refract Surg 1997;13:246-54.
  14. Tanabe T, Miyata K, Samejima T, et al. Influence of wavefront aberration and corneal subepithelial haze on low-contrast visual acuity after photorefractive keratectomy. Am J Ophthalmol 2004; 138:620-4. https://doi.org/10.1016/j.ajo.2004.06.015
  15. Neeracher B, Senn P, Schipper I. Glare sensitivity and optical side effects 1 year after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 2004;30:1696-701. https://doi.org/10.1016/j.jcrs.2003.12.058
  16. Lee MJ, Lee SM, Lee HJ, et al. The changes of posterior corneal surface and high-order aberrations after refractive surgery in moderate myopia. Korean J Ophthalmol 2007;21:131-6. https://doi.org/10.3341/kjo.2007.21.3.131
  17. Wigledowska-Promienska D, Zawojska I. Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up. Eur J Ophthalmol 2007;17:507-14.
  18. Mrochen M, Kaemmerer M, Mierdel P, Seiler T. Increased higher- order optical aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg 2001;27: 362-9. https://doi.org/10.1016/S0886-3350(00)00806-3
  19. Seiler T, Kaemmerer M, Mierdel P, Krinke HE. Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 2000;118:17-21. https://doi.org/10.1001/archopht.118.1.17
  20. Martinez CE, Applegate RA, Klyce SD, et al. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 1998;116:1053-62.
  21. Lee SB, Choi BH. Analysis of higher-order wavefront aberrations in standard PRK. J Korean Ophthalmol Soc 2005;46:1454-63.
  22. He JC, Burns SA, Marcos S. Monochromatic aberrations in the accommodated human eye. Vision Res 2000;40:41-8. https://doi.org/10.1016/S0042-6989(99)00156-X
  23. Wang Y, Zhao K, Jin Y, et al. Changes of higher order aberration with various pupil sizes in the myopic eye. J Refract Surg 2003;19:S270-4.
  24. Miyamoto T, Saika S, Yamanaka A, et al. Wound healing in rabbit corneas after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 2003;29:153-8. https://doi.org/10.1016/S0886-3350(02)01450-5
  25. Oshika T, Miyata K, Tokunaga T, et al. Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis. Ophthalmology 2002;109:1154-8. https://doi.org/10.1016/S0161-6420(02)01028-X
  26. Buzzonetti L, Petrocelli G, Valente P, et al. Comparison of corneal aberration changes after laser in situ keratomileusis performed with mechanical microkeratome and IntraLase femtosecond laser: 1-year follow-up. Cornea 2008;27:174-9. https://doi.org/10.1097/ICO.0b013e31815a50bf
  27. Steinert RF, Fynn-Thompson N. Relationship between preoperative aberrations and postoperative refractive error in enhancement of previous laser in situ keratomileusis with the LADARVision system. J Cataract Refract Surg 2008;34:1267-72. https://doi.org/10.1016/j.jcrs.2008.04.019
  28. Marcos S, Barbero S, Llorente L, Merayo-Lloves J. Optical response to LASIK surgery for myopia from total and corneal aberration measurements. Invest Ophthalmol Vis Sci 2001;42:3349-56.
  29. Seo KY, Lee JB, Kang JJ, et al. Comparison of higher-order aberrations after LASEK with a 6.0 mm ablation zone and a 6.5 mm ablation zone with blend zone. J Cataract Refract Surg 2004;30:653-7. https://doi.org/10.1016/j.jcrs.2003.09.039
  30. Oh SJ, Lee IS, Lee YG, et al. Comparison of higher-order aberrations between wavefront-guided laser in situ keratomileusis and laser epithelial keratomileusis. J Korean Ophthalmol Soc 2004;45: 1652-8.
  31. Lee SB, Hwang BS, Lee JY. Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations. J Refract Surg 2009:1-13. doi: 10.3928/1081597X-20091209-01. [Epub ahead of print]
  32. Marcos S. Aberrations and visual performance following standard laser vision correction. J Refract Surg 2001;17:S596-601.
  33. Hjortdal JO, Olsen H, Ehlers N. Prospective randomized study of corneal aberrations 1 year after radial keratotomy or photorefractive keratectomy. J Refract Surg 2002;18:23-9.
  34. Oshika T, Klyce SD, Applegate RA, Howland HC. Changes in corneal wavefront aberrations with aging. Invest Ophthalmol Vis Sci 1999;40:1351-5.
  35. Cheng X, Bradley A, Hong X, Thibos LN. Relationship between refractive error and monochromatic aberrations of the eye. Optom Vis Sci 2003;80:43-9. https://doi.org/10.1097/00006324-200301000-00007
  36. McLellan JS, Marcos S, Burns SA. Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 2001;42:1390-5.
  37. Nagy ZZ, Palagyi-Deak I, Kelemen E, Kovacs A. Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism. J Refract Surg 2002;18:S615-9.
  38. Yang SJ, Kim TI, Cha HW. Comparison of wavefront-guided LASIK and conventional LASIK. J Korean Ophthalmol Soc 2004;45:117-24.
  39. Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefront- guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg 2001;27:201-7. https://doi.org/10.1016/S0886-3350(00)00827-0
  40. Pallikaris IG, Kymionis GD, Panagopoulou SI, et al. Induced optical aberrations following formation of a laser in situ keratomileusis flap. J Cataract Refract Surg 2002;28:1737-41. https://doi.org/10.1016/S0886-3350(02)01507-9
  41. Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 1988;14:46-52. https://doi.org/10.1016/S0886-3350(88)80063-4
  42. Schwiegerling J, Snyder RW. Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy. J Cataract Refract Surg 2000;26:214-21. https://doi.org/10.1016/S0886-3350(99)00359-4
  43. Halliday BL. Refractive and visual results and patient satisfaction after excimer laser photorefractive keratectomy for myopia. Br J Ophthalmol 1995;79:881-7. https://doi.org/10.1136/bjo.79.10.881

Cited by

  1. Clinical Outcomes of Advanced Surface Ablation with Smoothing in High Myopia vol.53, pp.3, 2012, https://doi.org/10.3341/jkos.2012.53.3.365
  2. 라섹 수술 전과 후의 고위수차에 영향을 미치는 결정변수 vol.15, pp.9, 2010, https://doi.org/10.5762/kais.2014.15.9.5621
  3. 근시에서의 라섹과 TransPRK라섹 수술 후 고위수차 비교 vol.3, pp.2, 2010, https://doi.org/10.15205/kschs.2015.3.2.372