Plant Growth and Differential Display Expression of Leaf Protein to the Foliar Application of Liquid Silica in Rice Plant

벼 규산 엽면 시비에 따른 생장 반응과 엽의 단백질 발현양상

  • Kim, Jeong-Soo (Department of Crop Science, Chungbuk National University) ;
  • Choi, Bong-Soo (Department of Crop Science, Chungbuk National University) ;
  • Ahn, Jeong-Koo (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University)
  • 김정수 (충북대학교 식물자원학과) ;
  • 최봉수 (충북대학교 식물자원학과) ;
  • 안정구 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과) ;
  • 이철원 (충북대학교 식물자원학과)
  • Received : 2010.01.08
  • Accepted : 2010.03.05
  • Published : 2010.03.30

Abstract

Rice plant as a typical silicified plants needs silica absorption during growing period. The rice leaves are erected by uptake of silica up stiffly and sun light could be reached in the bottom leaves in the crop community. Physiologically, nitrogen uptake would be controlled by silica. In the field experiment, transplanting date of rice cultivar such as hwasinbyeo, japonica rice was May 30, 2006. N levels per ha were 100 and 200kg, and liquid silica(ai 11%, manufactured by Dongbu-hightech Co.) was sprayed foliar at 3 times with 1,000x diluted water at an interval of one week from 25 days before heading. The plant heights and culm lengths treated with liquid silica were shortened and the panicle lengths were increased as compared with control. The breaking strength of the 3th lower internode treated with silica foliar application was increased more than in control plot, and the lodging index with silica plot was reduced as compared to control plot. The rice yields of treated plots with silica were increased higher due to increasing the no. of spikelet per panicle and ripened grain ratio. By using 1D and 2D-PAGE, proteins were expressed differentially in various nitrogen application level and silica treatment. Aspects in SDS-PAGE bands in each nitrogen treatment level were changed, as well as the silica treatment plot, which is relation to conventional plot. After tryptic digestion, proteins identified by MALDI-TOF-MS, those are fructose-bisphosphate aldolase class-I, ribulose 1,5-bisphosphate carboxylase small subunit associated with flag leaf.

본 연구는 액상으로 제조된 규산질 비료를 유수형성기에 처리하여 질소 수준별 생육 및 도복방지에 효과를 구명하고 규산 처리로 인하여 벼의 지엽의 단백질의 발현양상을 비교하여 그 효과와 변화를 구명하고자 기초적인 실험을 수행하였다. 초장은 질소 시비수준 증가시 증대되는 경향을 나타내었으며 규산 처리시 초장 감소 효과를 보였고, 간장은 규산 처리구 모두 무처리에 대비하여 단축되는 효과를 나타났으며 특히 질소 배량 처리구내에서 규산 처리로 인한 간장의 단축효과가 더욱 큰 효과를 보였다. 수장은 규산 처리구 모두 무처리에 대비하여 수장이 길어졌으며 질소 배량 처리 구에서 효과가 가장 컸다. 질소 수준별 규산 처리구는 무처리구에 비하여 식물체 생체중과 하위절 간의 좌절중이 증가하였으며, 도복지수는 감소하였다. 수량구성요소 중 단위 면적당 이삭수는 규산엽면 시비효과가 적었으나, 이삭당 영화수와 등숙률은 무처리구에 비하여 유의하게 증가하였으며 수량도 증가하였다. 질소처리 수준별 SDS-PAGE의 band의 양상의 변화를 가져왔으며 규산 처리구 또한 무처리구에 비하여 band의 양상변화를 볼 수 있었다. 특히, 30.0~45.0 kDa 사이와 15 kDa 부근의 밴드 양상은 질소 수준의 변화와 규산 처리에 따라 그 발현강도의 차이가 선명하게 차이가 있었으며, 미세 밴드의 발현 강도 또한 확인 할 수 있었다. 이차원 전기영동을 이용한 지엽의 단백질 발현양상을 질소의 시비 수준 및 규산처리 유무에 따른 변화의 발현 양상은 차이가 있었다. 발현 단백질 동정결과 지엽의 Spot.1은 fructose-bisphosphate aldolase class-I, spot no.2는 ribulose 1,5-bisphosphate carboxylase small subunit로 동정되었다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. Abu Hena, M.K., K. H. Kim., K. H. Shin.,H.-S. Seo., H. Tsujimoto., H.Y. Heo., J.S. Choi., C.S. Park., & S. H. Woo. 2009. Diversity of Novel Glutenin Subunits in Bread Wheat (Triticum aestivum L.). J. Plant Biology. 52: 533-542. https://doi.org/10.1007/s12374-009-9069-z
  2. Gutteridge, S. & A.A. Gatenby. 1995. Structure of an effector-induced inactivated state of ribulose 1,5-bisphosphate carboxylase/oxygenase: the binary complex between emzyme and xylulose 1,5-bisphosphate. The Plant Cell. 7: 809-819. https://doi.org/10.1105/tpc.7.7.809
  3. Ireland, H.M.M. & J.W. Bradbeer. 1971. Plastid development in primary leaves of Phaseolus vulgaris. The effects of D-threo-and L-thre o-chloramphenicol on the light-induced formation of enzymes of the photosynthetic carbon pathway. Plants. 96:254-261. https://doi.org/10.1007/BF00387444
  4. Ito, K. & K. Chiba. 1994. Relationship between silicate fertility of soil and irrigation water and the occurrence of rice blast disease. Tohoku Agric. Res. 47: 7-8.
  5. Iwata, I. & I. Baba. 1962. Studies on the varietal adaptability for heavy manuring in rice. 2. Effect of silicate on the adaptability of the rice plant for heavy manuring in relationship to photosynthesis. Crop Sci. Soc., Jpn 30: 237-240. https://doi.org/10.1626/jcs.30.237
  6. Kang, Y. S., J. H. Lee, J. I. Kim, & J. S. Lee. 1997. Influence of silicate application on rice grain quality. Korean J. Crop Sci. 42, 800-804.
  7. Kim, C. B., S. D. Park, D. U. Choi, S. G. Son, & J. Choi. 1986. Changes in rice yield and soil physico-chemical properties as affect by annul application of silicate fertilizer to the paddy soil. J. Korean Soc. Soil Sci. Fert. 19 (2), 123-131.
  8. Kim, C. B. & J. Choi. 2002. Changes in rice yield, nutrient's use efficiency and soil chemical properties as affected by annual application of slag silicate fertilizer. J. Korea Soc. Soil Sci. Fert. 35, 280-289.
  9. Komatsu, S. & N. Tanaka. 2004. Rice proteome analysis :A step toward functional analysis of the rice genome. Proteomics. 4:938-949.
  10. Krapp, A., W.P. Quick, & M. Stitt. 1991. Ribulose 1,5-bisphosphate carboxylase/oxygenase, other Calvin cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta. 186: 58-69.
  11. 이덕배, 권태오, 박건호, (1990). 질소 및 규산시용이 수도 수량 및 도복 관련형질에 미치는 영향. 농시논문(토양비료) 31(3): 27-33.
  12. Lee, K. S., Y. S. Ahn, G. S. Rhee, & H. S. Ha. 1986. Change of silica solubility in the suspension of sandy loam soil treated with silicate fertilizers. J. Korean Soc. Soil Sci. Fert. 19: 321-325.
  13. Lee, C. H., Yang, M. S. Chang, K. W., Lee, Y. B., Chung, K. Y. & Kim, P. J. 2005. Reducing nitrogen fertilization level of rice (Oryza sativa L.) by silicate application in Korea paddy soil. J. Korea Soc. Soil Sci. Fert. 38(4): 194-201.
  14. Lewin, J. & B. E. F. Reimann. 1969. Silicon and Plant growth. Ann Rev. Plant Physiol. 20, 289-304. https://doi.org/10.1146/annurev.pp.20.060169.001445
  15. Ma. J. F. & Takahashi E. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil. 126: 115-119. https://doi.org/10.1007/BF00041376
  16. Ma. J. F. & Takahashi E. 2002. Soil, Fertilizer, and Plant Silicon Research in Japan, ELSEVIER: 107-119.
  17. Masson, F. & M. Rossignol. 1995. Basic plasticity of protein expression in tobacco leaf plasma membrane. Plant J. 8: 77-85. https://doi.org/10.1046/j.1365-313X.1995.08010077.x
  18. Matoh, T., S. Murata & E. Takahashi. 1991. Effect of silicate application on photosynthesis of rice plant. Jpn. J. Soil Sci. Plant Nutr., 62:248-251.
  19. Odegard, W. J. J. Liu & B. O. de Lumen. 1996. Cloning and expression of Oryza sativa sucrose synthase 1 (RSsl) in developing seeds endosperm. Plant Science. 113: 67-78. https://doi.org/10.1016/0168-9452(95)04288-1
  20. O'Farrell, P. F. 1975. High resolution two-dimensional electrophoresis of proteins J. Biol. Chem. 250: 4007-4021.
  21. Paik S. B. 1975. The effect of silicate, nitrogen, phosphorus and potassium fertilizers on the chemical components of rice plant and on the incidence of blast disease of rice caused by Pyricularia oryzae Cavara. Kor. J. Pl. Prot. 14, 97-109.
  22. Shouichi Yoshida. 1981. Fundamentals of rice crop science. IRRI. 165-167.
  23. Santoni, V., M. Delarue, M. Caboche & C. Bellini. 1997. A comparison of two-dimensional electrophoresis data with phenotypical traits in Arabidopsis leads to the identification of a mutant (cri 1) that accumulates cytolinins. Planta. 202: 62-69. https://doi.org/10.1007/s004250050103
  24. Takahashi, E., K. Arai & Y. Kashida. 1966. Studies on the physiological role of silicon in crop plant. Part 14, Effect of silicon on the assimilation and translocation of $^{14}CO_2$ supplied at the various growth stages of rice. J. Sci. Soil and Manure, 37:594-598.
  25. Thiellement, H., N. Bahman, C. Damerval, C. Plomion, M. Rossignol, V. Santoni, D. de Vienne & M. Zivy. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 20: 2013-2026. https://doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#
  26. Van Oosten, J. J. & R.T. Besford. 1994. Sugar feeding mimics effect of subunit transcripts but not of the large subunit transcripts. Journal of Plant Physiology. 143: 306-312. https://doi.org/10.1016/S0176-1617(11)81636-6
  27. Woo, S. H., H. S. Kim, B. H. Song, C. W. Lee, Y. M. Park, S. K. Jong & Y. G. Cho. 2003. Rice proteomics: A functional analysis of the rice genome and application. Korea Journal of Plant Biotechnology 30(3): 281-291. https://doi.org/10.5010/JPB.2003.30.3.281