DOI QR코드

DOI QR Code

Work-Hardening and Ductility Enhancement Mechanism of Cold Rolled Multiphase TRIP Steels

  • Received : 2009.04.28
  • Accepted : 2010.04.13
  • Published : 2010.08.01

Abstract

The work hardening behavior of a high strength sheet steel has been studied in relation to the deformation induced martensitic transformation (DIMT) of retained austenite (${\gamma}_R$). The work hardening rate was observed to decrease gradually in a continuously oscillating manner, leading to a significant ductility enhancement in these multiphase steels, in contrast to specimens without ${\gamma}_R$. Ductility enhancement has been found to depend on the austenite stability (${\beta}$), with the largest tensile elongation of ~35 % exhibited in the case with the minimum value of ${\beta}$. The DIMT has thus been interpreted in this study as the successive processes of accumulation and relaxation of internal strain energy produced during inelastic deformation, as has been prescribed by an internal variable theory. This process appears to be responsible for the locally fluctuating work hardening behavior. A new ductility enhancement mechanism is finally proposed in this connection to account for the observed work hardening as well as for the transformation behavior.

Keywords

References

  1. V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, Trans. Am. Soc. Met. 60, 252 (1967).
  2. T. Furukawa, H. Morikawa, M. Endo, H. Takechi, K. Koyama, O. Akisue, and T. Yamada, Trans. Iron. Steel. Inst. Japan 21, 812 (1981). https://doi.org/10.2355/isijinternational1966.21.812
  3. M. S. Rashid and B. V. N. Rao, Met. Trans. A 13A, 1679 (1982).
  4. G. R. Speich, A. J. Schwoeble, and G. P. Huffman, Met. Trans. A 14A, 1079 (1983).
  5. K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa, ISIJ Int. 33, 775 (1993). https://doi.org/10.2355/isijinternational.33.775
  6. S. J. Mates and R. F. Hehemann, Trans. Met. Soc. AIME 221, 179 (1961).
  7. R. Le Houillier, G. Begin, and A. Dube, Met. Trans. 2, 2645 (1971). https://doi.org/10.1007/BF02814908
  8. H. K. D. H. Bhadeshia and D. V. Edmonds, Met. Trans. A 10A, 895 (1979).
  9. H. K. D. H. Bhadeshia and D. V. Edmonds, Met. Sci. 17, 411 (1983).
  10. K. Tomita, T. Okita, and K. Nakaoka, Tran. Iron Steel Inst. Japan 24, 363 (1984).
  11. Y. Sakuma, D. K. Matlock, and G. Krauss, Metall. Trans. A 23, 122 (1992).
  12. K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ Int. 32, 1311 (1992). https://doi.org/10.2355/isijinternational.32.1311
  13. C. Jing, D. W. Suh, C. S. Oh, Z. C. Wang, and S. J. Kim, Met. Mater. Int. 13, 13 (2007). https://doi.org/10.1007/BF03027817
  14. S. Zaefferer, J. Ohlert, and W. Bleck, Acta Mater. 52, 2765 (2004). https://doi.org/10.1016/j.actamat.2004.02.044
  15. I. Choi, D. M. Bruce, D. K. Matlock, and J. G. Speer, Met. Mater. Int. 14, 139 (2008). https://doi.org/10.3365/met.mat.2008.04.139
  16. P. J. Jacques, J. Ladrière, and F. Delannay, Metall. Mater. Trans. A 32, 2759 (2001). https://doi.org/10.1007/s11661-001-1027-4
  17. A. K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S. B. Singh, Mater. Sci. Eng. A 445, 549 (2007). https://doi.org/10.1016/j.msea.2006.09.101
  18. D. W. Suh, C. S. Oh, and S. J. Kim, Met. Mater. Int. 14, 275 (2008). https://doi.org/10.3365/met.mat.2008.06.275
  19. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim, and K. H. Song, J. Kor. Inst. Met. Mater. 46, 627 (2008).
  20. T. Angel, J. Iron and Steel Inst. 177, 165 (1954).
  21. D. C. Ludwigson and J. A. Berger, J. Iron and Steel Inst. 207, 63 (1969).
  22. I. Tamura, T. Maki, and H. Hato, Trans. Iron and steel Inst. Japan 10, 163 (1970).
  23. G. B. Olson and M. Azrin, Met. Trans. A 9A, 713 (1978).
  24. L. Remy and A. Pineau, Mat. Sci. Eng. 26, 123 (1976). https://doi.org/10.1016/0025-5416(76)90234-2
  25. O. Matsumura, Y. Sakuma, and H. Takechi, Trans. Iron and Steel Inst. Japan 27, 570 (1987). https://doi.org/10.2355/isijinternational1966.27.570
  26. O. Matsumura, Y. Sakuma, and H. Takechi, Scripta mater. 21, 1301 (1987). https://doi.org/10.1016/0036-9748(87)90103-7
  27. H. C. Chen, H. Era, and M. Shimizu, Met. Trans. A 20A, 437 (1989).
  28. Y. Sakuma, O. Matsumura, and H. Takechi, Met. Trans. A 22A, 489 (1991).
  29. Y. Sakuma, D. K. Matlock, and G. Krauss, J. Heat Treat. 9, 109 (1990).
  30. T. K. Ha and Y. W. Chang, Acta mater. 46, 2741 (1998). https://doi.org/10.1016/S1359-6454(97)00473-4
  31. B. V. N. Rao and M. S. Rashid, Metallography 13, 19 (1983).
  32. T. Maki and C. M. Wayman, Acta metall. 25, 681 (1977). https://doi.org/10.1016/0001-6160(77)90011-6
  33. J. W. Brooks, M. H. Loretto, and R. E. Smallman, Acta metall. 27, 1829 (1979). https://doi.org/10.1016/0001-6160(79)90073-7
  34. T. Suzuki, G. Kojima, K. Suzuku, T. Hashimoto, and M. Ichimura, Acta metall. 25, 1151 (1977). https://doi.org/10.1016/0001-6160(77)90202-4
  35. R. L. Miller, Trans. ASM 57, 892 (1964).
  36. R. L. Miller, Trans. ASM 61, 592 (1968).
  37. J. H. Chung and Y. W. Chang, Detsu-to-Hagane 79, 47 (1993).
  38. H. C. Shin, T. K. Ha, and Y. W. Chang, Scripta mater. 45, 823 (2001). https://doi.org/10.1016/S1359-6462(01)01101-0
  39. H. C. Choi, T. K. Ha, H. C. Shin, and Y. W. Chang, Scripta mater. 40, 1171 (1999). https://doi.org/10.1016/S1359-6462(99)00017-2
  40. C. Y. Lee, T. K. Ha, and Y. W. Chang, J. Kor. Inst. Met. Mater. 39, 1347 (2001).
  41. O. Matsumura, Y. Sakuma, and H. Takechi, ISIJ Int 32, 1014 (1992). https://doi.org/10.2355/isijinternational.32.1014
  42. J. M. Rigsbee and P. J. Van der Arend, Proc. Formable HSLA and dual-phase steels (ed. A. T. Davenport), p.56, TMSAIME, Warrendale, USA (1979).

Cited by

  1. Constitutive Relationship of TRIP780 Steel in Quenching Process vol.572, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amr.572.261
  2. The study on the threshold strain of microvoid formation in TRIP steels during tensile deformation vol.546, pp.None, 2010, https://doi.org/10.1016/j.msea.2012.03.065
  3. Effect of Testing Temperature on Retained Austenite Stability of Cold Rolled CMnSi Steels Treated by Quenching and Partitioning Process vol.84, pp.3, 2013, https://doi.org/10.1002/srin.201200129
  4. Addressing Retained Austenite Stability in Advanced High Strength Steels vol.738, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/msf.738-739.212
  5. Molecular Dynamics Simulation of TRIP Steel Residual Austenite Stacking Fault Development vol.827, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.827.8
  6. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12 Mn steel at cryogenic temperatures vol.20, pp.1, 2010, https://doi.org/10.1007/s12540-014-1010-4
  7. Thermo-mechanical Processing of TRIP-Aided Steels vol.46, pp.7, 2010, https://doi.org/10.1007/s11661-015-2885-5
  8. Microstructural and Mechanical Observations of Galvanized TRIP Steel after Friction Stir Spot Welding vol.30, pp.9, 2015, https://doi.org/10.1080/10426914.2015.1004699
  9. Current opinion in medium manganese steel vol.31, pp.7, 2010, https://doi.org/10.1179/1743284714y.0000000722
  10. A semi-numerical algorithm for instability of compressible multilayered structures vol.56, pp.1, 2015, https://doi.org/10.1007/s00466-015-1155-0
  11. Deformation Behavior in Medium Mn Steel of Nanometer-Sized α′ + γ Lamellar Structure vol.47, pp.12, 2010, https://doi.org/10.1007/s11661-016-3728-8
  12. A comparative study between conventional and hybrid friction stir welding of a TRIP steel vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aad119
  13. Influence of initial microstructures on intercritical annealing behaviour in a medium Mn steel vol.35, pp.17, 2010, https://doi.org/10.1080/02670836.2018.1475445
  14. The effect of surface mechanical attrition treatment (SMAT) on plastic deformation mechanisms and mechanical properties of austenitic stainless steel 316L vol.6, pp.12, 2010, https://doi.org/10.1088/2053-1591/ab66ef