DOI QR코드

DOI QR Code

Effect of Ni-Cr Seed Layer Thickness on the Adhesion Characteristics of Flexible Copper Clad Laminates Fabricated using a Roll-to-Roll Process

  • Noh, Bo-In (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yoon, Jeong-Won (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Jung, Seung-Boo (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2009.10.16
  • Accepted : 2010.04.26
  • Published : 2010.10.01

Abstract

The adhesion strength of a Cu/Ni-Cr/polyimide flexible copper clad laminate (FCCL), which was manufactured via a roll-to-roll process, was evaluated according to the thickness of the Ni-Cr seed layer using a $90^{\circ}$ peel test. The changes in the morphology, chemical bonding, and adhesion properties were characterized using a scanning electron microscopy (SEM), an atomic force microscopy (AFM), and an X-ray photoelectron spectroscopy (XPS). The thickness of the Ni-Cr (Ni:Cr = 80:20) seed layer in which the maximum peel strength of the FCCL was observed was $200{\AA}$. The higher FCCL peel strength was attributed to the lower proportion of C-N bonds and higher proportion of C-O and carbonyl (C = O) bonds in the polyimide surface compared with the FCCL with a lower adhesion strength. The FCCL with a higher peel strength had a fractured polyimide surface with a higher surface roughness. The adhesion strength between the metal and polyimide was pirmarily attributed to the chemical interaction between the metal layer and the functional groups of the polyimide.

Keywords

References

  1. S. Kamiya, H. Furuta, and M. Omiya, Surf. Coat. Technol. 202, 1084 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.061
  2. F. Barlow, A. Lostetter, and A. Elshabini, Microelectron. Reliab. 42, 1091 (2002). https://doi.org/10.1016/S0026-2714(02)00061-6
  3. E. Liston, L. Martinu, and M. Wertheimer, J. Adhes. Sci. Technol. 7, 1091 (1993). https://doi.org/10.1163/156856193X00600
  4. J. Y. Song and J. Yu, Acta mater. 50, 3985 (2002). https://doi.org/10.1016/S1359-6454(02)00197-0
  5. S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam, and Y. H. Kim, Surf. Coat. Technol. 200, 2072 (2005). https://doi.org/10.1016/j.surfcoat.2005.05.021
  6. Y. B. Park, I. S. Park, and J. Yu, Mater. Sci. Eng. A 266, 261 (1999). https://doi.org/10.1016/S0921-5093(98)01117-4
  7. T. Miyamura and J. Koike, Mater. Sci. Eng. A. 445-446, 620 (2007). https://doi.org/10.1016/j.msea.2006.09.097
  8. L. P. Buchwalter and K. Holloway, J. Adhes. Sci. Technol. 12, 95 (1998). https://doi.org/10.1163/156856198X00678
  9. K. J. Min, M. H. Jeong, K. H. Lee, Y. S. Jeong, and Y. B. Park, J. Kor. Inst. Met. & Mater. 47, 675 (2009).
  10. J. L. Jordan, P. N. Sanda, J. F. Morar, C. A. Kovac, F. J. Himpsel, and R. A. Pollak, J. Vac. Sci. Technol. A 4, 1046 (1986). https://doi.org/10.1116/1.573451
  11. J. S. Eom and S. H. Kim, Thin Solid Films 516, 4530 (2008). https://doi.org/10.1016/j.tsf.2008.01.022
  12. R. Haight, R. C. White, B. D. Silverman, and P. S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988). https://doi.org/10.1116/1.575010
  13. N. J. Chou, D. W. Dong, J. Kim, and A. C. Liu, J. Electrochem. Soc. 131, 2335 (1984). https://doi.org/10.1149/1.2115252
  14. M. I. Birjega, C. A. Constantin, I. T. Florescu, and C. Sarbu, Thin Solid Films 92, 315 (1982). https://doi.org/10.1016/0040-6090(82)90154-7
  15. S. Schiller, U. Heisig, K. Goedicke, and H. Bilz, Thin Solid Films 119, 211 (1984). https://doi.org/10.1016/0040-6090(84)90536-4
  16. I. S. Park and J. Yu, Acta mater. 46, 2947 (1998). https://doi.org/10.1016/S1359-6454(97)00208-5
  17. B. I. Noh and S. B. Jung, J. Electron. Mater. 38, 46 (2009). https://doi.org/10.1007/s11664-008-0543-z
  18. B. I. Noh, J. W. Yoon, B. Y. Lee, and S. B. Jung, J. Mater. Sci. Mater. Electron. 20, 885 (2009). https://doi.org/10.1007/s10854-008-9811-1

Cited by

  1. Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump vol.51, pp.5, 2010, https://doi.org/10.7567/jjap.51.05ee06
  2. Effects of surface finishes and loading speeds on shear strength of Sn–3.0Ag–0.5Cu solder joints vol.89, pp.None, 2010, https://doi.org/10.1016/j.mee.2011.03.148
  3. 초박형 FPCB의 유연 내구성 연구 vol.21, pp.4, 2010, https://doi.org/10.6117/kmeps.2014.21.4.069
  4. Effects of microcrack evolution on the electrical resistance of Cu thin films on flexible PI substrates during cyclic-bend testing vol.23, pp.4, 2010, https://doi.org/10.1007/s12540-017-6735-4
  5. Electro-mechanical Degradation Model of Flexible Metal Films Due to Fatigue Damage Accumulation vol.26, pp.4, 2020, https://doi.org/10.1007/s12540-019-00351-x