DOI QR코드

DOI QR Code

Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers

  • Zheming, Gu (Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Chunzhong, Li (Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Gengchao, Wang (Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Ling, Zhang (Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Qilin, Cheng (Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Xiaohui, Li (Engineering Plastics Department, Shanghai Research Institute of Materials) ;
  • Wendong, Wang (Engineering Plastics Department, Shanghai Research Institute of Materials) ;
  • Shilei, Jin (Engineering Plastics Department, Shanghai Research Institute of Materials)
  • Received : 2009.02.03
  • Accepted : 2009.08.17
  • Published : 2010.01.25

Abstract

Electrically conductive polypropylene/hybrid filler (PP/GO.MWNTs) and PP/MWNTs composite have been prepared via melt blending PP with the hybrid filler (multiwalled carbon nanotubes (MWNTs) and graphite oxide (GO)) and the single filler (MWNTs), respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to research the interior morphology of the GO. MWNTs hybrid filler, and the dispersion of the hybrid filler in the PP matrix is also observed by SEM. The results show that a clear reduction in electrical resistivity and percolation threshold of PP/GO.MWNTs composite can be ascribed to the corporation of GO. The electrical properties of PP composites were improved owing to the effective conductive networks formed by hybrid filler.

Keywords

Acknowledgement

Grant : Shanghai Rising-Star Program, Major Basic Research Project of Shanghai, Ph.D. Programs Foundation of Ministry of Education of China, Special Projects for Key Laboratories in Shanghai, Special Projects for Nanotechnology of Shanghai, Program of Shanghai Subject Chief Scientist, Shanghai Leading Academic Discipline Project

Supported by : National Natural Science Foundation of China,

References

  1. J.H. Choi, S.J. Gwon, J.Y. Shon, C.H. Jung, Y.E. Ihm, Y.M. Lim, Y.C. Nho, J. Ind. Eng. Chem. 14 (2008) 116; https://doi.org/10.1016/j.jiec.2007.08.005
  2. J.N. Coleman, U. Khan, Adv. Mater. 18 (2006) 689 https://doi.org/10.1002/adma.200501851
  3. T. Rueckes, K. Kim, E. Jiselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Science 289 (2000) 94 https://doi.org/10.1126/science.289.5476.94
  4. Z. Yao, H. Postma, W.L. Balents, C. Dekker, Nature 402 (1999) 273 https://doi.org/10.1038/46241
  5. G.N. Kim, Y.H. Jung, J.J. Lee, J.K. Moon, C.H. Jung, J. Ind. Eng. Chem. 14 (2008) 732. https://doi.org/10.1016/j.jiec.2008.05.001
  6. H.D. Bao, Z.X. Guo, J. Yu, Polymer 49 (2008) 3826 https://doi.org/10.1016/j.polymer.2008.06.024
  7. Z. Zhen, S.F. Wang, Y. Zhang, Y.X. Zhang, J. Appl. Polym. Sci. 102 (2006) 4823. https://doi.org/10.1002/app.24722
  8. C. Dongyu, M. Song, C.X. Xu, Adv. Mater. 20 (2008) 1706. https://doi.org/10.1002/adma.200702602
  9. T. Szabo, E. Tombacz, E. Illes, I. Dekany, Carbon 44 (2006) 537. https://doi.org/10.1016/j.carbon.2005.08.005
  10. M. Jeon, Y. Tomitsuka, K. Kamisako, J. Ind. Eng. Chem. 14 (2008) 836 https://doi.org/10.1016/j.jiec.2008.06.004
  11. I.S. Lee, Y.S. Gal, J. Ind. Eng. Chem. 14 (2008) 720 https://doi.org/10.1016/j.jiec.2008.06.002
  12. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 42 (2004) 2929.
  13. G.C. Wang, Z.Y. Yang, X.W. Li, C.Z. Li, Carbon 43 (2005) 2564. https://doi.org/10.1016/j.carbon.2005.05.008
  14. R. Bissessur, P.K.Y. Liu, S.F. Scully, Langmuir 22 (2006) 1729. https://doi.org/10.1021/la0527339
  15. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017
  16. Y. Shin, D. Lee, K. Lee, K.H. Ahn, B. Kim, Ind. Eng. Chem. 14 (2008) 515 https://doi.org/10.1016/j.jiec.2008.02.002
  17. Y. Wang, J. Wu, F. Wei, Carbon 41 (2003) 2939. https://doi.org/10.1016/S0008-6223(03)00390-7
  18. G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, P.H. Bianco, Carbon 43 (2005) 641. https://doi.org/10.1016/j.carbon.2004.10.035
  19. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44 (2006) 3342. https://doi.org/10.1016/j.carbon.2006.06.004
  20. S. Stankovich, R.D. Piner, X. Chen, Mater. Chem. 16 (2005) 155.
  21. M.K. Seo, S.J. Park, Chem. Phys. Lett. 395 (2004) 44. https://doi.org/10.1016/j.cplett.2004.07.047
  22. S. Cui, R. Canet, A. Derre, M. Couzi, P. Delhaes, Carbon 41 (2003) 797 https://doi.org/10.1016/S0008-6223(02)00405-0
  23. L. Vaisman, G. Marom, H.D. Wagner, Adv. Funct. Mater. 16 (2006) 357 https://doi.org/10.1002/adfm.200500142
  24. S.H. Kang, Y.E. Sung, J. Ind. Eng. Chem. 14 (2008) 52. https://doi.org/10.1016/j.jiec.2007.06.004
  25. J.Y. Park, I.H. Lee, G.N. Bea, J. Ind. Eng. Chem. 14 (2008) 707. https://doi.org/10.1016/j.jiec.2008.03.006

Cited by

  1. Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1630
  2. Influence of Aminized Graphite Nanosheets on the Physical Properties of PMMA-based Nanocomposites vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.196
  3. Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor vol.12, pp.3, 2010, https://doi.org/10.5714/cl.2011.12.3.162
  4. Effect of oxygen plasma treatment of carbon nanotubes on electromagnetic interference shielding of polypyrrole‐coated carbon nanotubes vol.126, pp.s2, 2012, https://doi.org/10.1002/app.36709
  5. Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites vol.21, pp.8, 2010, https://doi.org/10.1007/s13233-013-1104-8
  6. Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties vol.70, pp.1, 2010, https://doi.org/10.1007/s00289-012-0808-9
  7. Diffusion of CO2 in Polymer Nanocomposites Containing Different Types of Carbon Nanoparticles for Solid-State Microcellular Foaming Applications vol.26, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/jnanor.26.63
  8. Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites vol.49, pp.4, 2010, https://doi.org/10.1007/s10853-013-7855-y
  9. Aluminum-doped zinc oxide powders: synthesis, properties and application vol.25, pp.2, 2010, https://doi.org/10.1007/s10854-013-1630-3
  10. Synergetic effects of carbon nanotubes and carbon fibers on electrical and self-heating properties of high-density polyethylene composites vol.50, pp.4, 2010, https://doi.org/10.1007/s10853-014-8716-z
  11. Effect of Carbon‐Based Particles on the Mechanical Behavior of Isotactic Poly(propylene)s vol.301, pp.4, 2010, https://doi.org/10.1002/mame.201500380
  12. Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites vol.28, pp.18, 2010, https://doi.org/10.1021/acs.chemmater.6b03206
  13. How interface compatibility affects conductivity evolution of silver nanobelts-filled electrically conductive composites during cure and post-treatments vol.20, pp.26, 2010, https://doi.org/10.1039/c8cp01875h
  14. Activated carbon fibers for toxic gas removal based on electrical investigation: Mechanistic study of p-type/n-type junction structures vol.9, pp.1, 2010, https://doi.org/10.1038/s41598-019-50707-x