DOI QR코드

DOI QR Code

Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process

  • Egues, I. (Chemical and Environmental Engineering Department, University of the Basque Country) ;
  • Alriols, M. Gonzalez (Chemical and Environmental Engineering Department, University of the Basque Country) ;
  • Herseczki, Z. (Cooperative Research Centre for Environmental and Information, Technology & Bioresource Group, University of Pannonia) ;
  • Marton, G. (Cooperative Research Centre for Environmental and Information, Technology & Bioresource Group, University of Pannonia) ;
  • Labidi, J. (Chemical and Environmental Engineering Department, University of the Basque Country)
  • Received : 2009.08.22
  • Accepted : 2009.10.27
  • Published : 2010.03.25

Abstract

The processing of rapeseed oil seeds for biodiesel production generates huge amounts of lignocellulosic cake residue mainly composed by cellulose, hemicelluloses and lignin. In this work, the valorisation of these components, especifically the majoritary fraction, hemicelluloses, was studied. Hemicelluloses were extracted, purified and characterized by different techniques (FTIR, $^1H\;NMR$, $^{13}C\;NMR$, and GPC). Autohydrolysis and acid hydrolysis processes were applied to obtain sugar monomers and oligomers. Glucose and xylose were the main simple sugars in the obtained hydrolysates, representing 22.7% and 40.2% of total sugars content in the autohydrolysis hydrolysates and 27.7% and 36.6% in the acid hydrolysates respectively. Arabinose, galactose and mannose were present in relatively minor quantities.

Keywords

Acknowledgement

Supported by : Spanish Ministry of Environmental and Rural and Marine Affairs

References

  1. S. Shah, S. Sharma, M.N. Gupta, Energy Fuels 18 (2004) 154 https://doi.org/10.1021/ef030075z
  2. B.H. Uma, Y.S. Kim, J. Ind. Eng. Chem. 15 (1) (2009) 1. https://doi.org/10.2298/CICEQ0901001R
  3. D. Anderson, D. Masterson, B. McDonald, L. Sullivan, in: Proceedings of the Chemistry and Technol. Conference, Renewable Energy Management Int. Palm Oil Conference (PIPOC), Putrajaya, Malasya, 2003.
  4. X. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong, G. Huang, Renew. Energy 33 (2008) 1678. https://doi.org/10.1016/j.renene.2007.09.007
  5. K.W. Lee, J.X. Yu, J.H. Mei, L. Yan, Y.W. Kim, K.W. Chung, J. Ind. Eng. Chem. 13 (2007) 799.
  6. G. Eriksson, H. Hedman, D. Bostrom, E. Pettersson, R. Backman, M.Ohman, Energy & Fuels (2009) http://pubs.acs.org/doi/pdf/10.1021/ef900308r.
  7. D. Ozcimen, F. Karaosmanoglu, Renewable Energy 29 (2004) 779. https://doi.org/10.1016/j.renene.2003.09.006
  8. E. Culcuoglu, E. Unay, F. Karaosmanoglu, Energy Sources 24 (2002) 329. https://doi.org/10.1080/00908310252888709
  9. A. Chesson, in: W. Haresign, D.J.A. Cole (Eds.), Recent Advances in Animal Nutrition, Butterworths, London, UK, 1987, p. 71.
  10. W.G. Glasser, W.E. Kaar, R.K. Jain, J.E. Sealey, Cellulose 7 (2000) 299. https://doi.org/10.1023/A:1009277009836
  11. B.A. Slominski, L.D. Campbell, J. Sci. Food Agric. 53 (1990) 175. https://doi.org/10.1002/jsfa.2740530205
  12. N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol. 96 (2005) 673. https://doi.org/10.1016/j.biortech.2004.06.025
  13. I. Spiridon, V.I. Popa, in: M.N. Belgacem, A. Gandini (Eds.), Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, 2008 (Chapter 13).
  14. S.G. Allen, D. Schulman, J. Lichwa, M.J. Antal Jr., Ind. Eng. Chem. Res. 40 (2001) 2934. https://doi.org/10.1021/ie990831h
  15. G. Pengfei, F. Daidi, L. Yan'e, M. Xiaoxuan, M. Pei, H. Junfeng, Z. Chenhui, Chin. J. Chem. Eng. 17 (2) (2009) 350. https://doi.org/10.1016/S1004-9541(08)60215-3
  16. C. Cara, E. Ruiz, I. Ballesteros, M.J. Negro, E. Castro, Process Biochem. 41 (2006) 423. https://doi.org/10.1016/j.procbio.2005.07.007
  17. M.P. Tucker, K.H. Kim, M.M. Newman, Q.A. Nguyen, Appl. Biochem. Biotechnol. 105 (2003) 165. https://doi.org/10.1385/ABAB:105:1-3:165
  18. I. Gabrielli, P. Gatenholm, W.G. Glasser, R.K. Jain, L. Kenne, Carbohyd. Polym. 43 (2000) 367. https://doi.org/10.1016/S0144-8617(00)00181-8
  19. M. Saska, E. Ozer, Biotechnol. Bioeng. 45 (1995) 517. https://doi.org/10.1002/bit.260450609
  20. H.-J. Huang, S. Ramaswamya, U.W. Tschirner, B.V. Ramarao, Sep. Purif. Technol. 62 (2008) 1. https://doi.org/10.1016/j.seppur.2007.12.011
  21. L.E. Wise, M. Murphy, A.A. D'Adieco, Paper Trade J. 122 (2) (1946) 35.
  22. R. Rowell, in: Proceedings of the 185th meeting of the American Chemical Society, Seattle, Washington, (1983), p. 70.
  23. X.F. Sun, R.C. Sun, J. Tomkinson, M.S. Baird, Carbohyd. Polym. 53 (2003) 483. https://doi.org/10.1016/S0144-8617(03)00150-4
  24. R.C. Sun, X.F. Sun, G.Q. Liu, P. Fowler, J. Tomkinson, Polym. Int. 51 (2002) 117. https://doi.org/10.1002/pi.815
  25. J. Rodrigues, J. Puls, O. Faix, H. Pereira, Holzforschung 55 (2001) 265. https://doi.org/10.1515/HF.2001.044
  26. R.C. Sun, J.M. Fang, L. Mott, J. Bolton, Holzforschung 53 (1999) 253. https://doi.org/10.1515/HF.1999.043
  27. A. Teleman, J. Lundqvist, F. Tjerneld, H. Stalbrand, O. Dahlman, Carbohydr. Res. 329 (2000) 807. https://doi.org/10.1016/S0008-6215(00)00249-4
  28. X.F. Sun, F. Xu, R.C. Sun, Z.C. Geng, P. Fowler, M.S. Baird, Carbohydr. Polym. 60 (2005) 15. https://doi.org/10.1016/j.carbpol.2004.11.012
  29. J.M. Fang, R.C. Sun, P. Fowler, J. Tomkinson, C.A.S. Hill, J. Appl. Polym. Sci. 79 (2000) 719.
  30. A. Fazilah, M.N. Mohd Azemi, A.A. Karim, M.N. Norakma, J. Agric. Food Chem. 57 (2009) 1527. https://doi.org/10.1021/jf8028013
  31. M.H. Thomsen, A. Thygesen, A.B. Thomsen, Bioresour. Technol. 99 (2008) 4221. https://doi.org/10.1016/j.biortech.2007.08.054
  32. S. Zhang, F. Marechal, M. Gassner, Z. Perin-Levasseur, W. Qi, Z. Ren, Y. Yanand, D. Favrat, Energy Fuels 23 (2009) 1759. https://doi.org/10.1021/ef801027x
  33. J. Robinson, J.D. Keating, S.D. Mansfield, J.N. Saddler, Enzyme Microb. Technol. 33 (2003) 757. https://doi.org/10.1016/S0141-0229(03)00192-3
  34. C.L. Wedig, E.H. Jaster, K.J. Moore, J. Agric. Food Chem. 35 (1987) 214. https://doi.org/10.1021/jf00074a012
  35. M. Neureiter, H. Danner, L. Madzingaidzo, H. Miyafuji, C. Thomasser, J. Bvochora, S. Bamusi, R. Braun, Chem. Biochem. Eng. 18 (2004) 55-63.
  36. J.A. Galbis, M.G. Garcia-Martin, in: M.N. Belgacem, A. Gandini (Eds.), Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, 2008 (Chapter 5).

Cited by

  1. A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel vol.13, pp.11, 2010, https://doi.org/10.1039/c1gc15535k
  2. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process vol.102, pp.18, 2011, https://doi.org/10.1016/j.biortech.2011.02.012
  3. 산 및 알칼리 처리에 의한 유채박의 유리당 추출 vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1575
  4. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks vol.103, pp.1, 2010, https://doi.org/10.1016/j.biortech.2011.09.139
  5. Rapeseed and sunflower meal: a review on biotechnology status and challenges vol.95, pp.5, 2010, https://doi.org/10.1007/s00253-012-4250-6
  6. Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil vol.291, pp.5, 2010, https://doi.org/10.1007/s00396-012-2856-y
  7. Production of bioethanol and biodiesel using instant noodle waste vol.37, pp.8, 2010, https://doi.org/10.1007/s00449-014-1135-3
  8. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs vol.93, pp.5, 2010, https://doi.org/10.2527/jas.2014-8644
  9. Production of fermentable species by microwave-assisted hydrothermal treatment of biomass carbohydrates: reactivity and fermentability assessments vol.20, pp.19, 2010, https://doi.org/10.1039/c8gc02182a
  10. A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000-2016 Period: Identification of Alternatives and Hot Topics vol.2, pp.1, 2010, https://doi.org/10.3390/chemengineering2010007
  11. Toward Renewable-Based, Food-Applicable Prebiotics from Biomass: A One-Step, Additive-Free, Microwave-Assisted Hydrothermal Process for the Production of High Purity Xylo-oligosaccharides from Beech W vol.7, pp.19, 2010, https://doi.org/10.1021/acssuschemeng.9b03096
  12. A New Step Forward Nonseasonal 5G Biorefineries: Microwave-Assisted, Synergistic, Co-Depolymerization of Wheat Straw (2G Biomass) and Laminaria saccharina (3G Biomass) vol.8, pp.33, 2020, https://doi.org/10.1021/acssuschemeng.0c03390
  13. Analysis and optimisation of a novel ‘almond-refinery’ concept: Simultaneous production of biofuels and value-added chemicals by hydrothermal treatment of almond hulls vol.765, pp.None, 2010, https://doi.org/10.1016/j.scitotenv.2020.142671
  14. Recovery of Nitrogen from Low-Cost Plant Feedstocks Used for Bioenergy: A Review of Availability and Process Order vol.35, pp.18, 2021, https://doi.org/10.1021/acs.energyfuels.1c02140
  15. Evolution of carbon and nitrogen during chemical looping gasification of rapeseed cake with Ca-Fe oxygen carrier vol.431, pp.p3, 2010, https://doi.org/10.1016/j.cej.2021.134232